On the geometry of the Gauss map of conformal foliations by lines
(2004) In Mathematical Proceedings of the Cambridge Philosophical Society 136. p.247-255- Abstract
- Let F be an oriented conformal foliation of connected, totally geodesic and 1-dimensional leaves in Rn+1. We prove that if n greater than or equal to 3 then the Gauss map phi: U --> S-n of F is a non-constant n-harmonic morphism if and only if it is a radial projection.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/286330
- author
- Burel, J-M
and Gudmundsson, Sigmundur
LU
- organization
- publishing date
- 2004
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Mathematical Proceedings of the Cambridge Philosophical Society
- volume
- 136
- pages
- 247 - 255
- publisher
- Cambridge University Press
- external identifiers
-
- wos:000189137300016
- scopus:1042267729
- ISSN
- 1469-8064
- DOI
- 10.1017/S0305004103007060
- language
- English
- LU publication?
- yes
- id
- 76f1a70e-891d-4e2b-90cf-5ceb35d64048 (old id 286330)
- date added to LUP
- 2016-04-01 16:49:26
- date last changed
- 2021-04-04 22:59:11
@article{76f1a70e-891d-4e2b-90cf-5ceb35d64048, abstract = {Let F be an oriented conformal foliation of connected, totally geodesic and 1-dimensional leaves in Rn+1. We prove that if n greater than or equal to 3 then the Gauss map phi: U --> S-n of F is a non-constant n-harmonic morphism if and only if it is a radial projection.}, author = {Burel, J-M and Gudmundsson, Sigmundur}, issn = {1469-8064}, language = {eng}, pages = {247--255}, publisher = {Cambridge University Press}, series = {Mathematical Proceedings of the Cambridge Philosophical Society}, title = {On the geometry of the Gauss map of conformal foliations by lines}, url = {http://dx.doi.org/10.1017/S0305004103007060}, doi = {10.1017/S0305004103007060}, volume = {136}, year = {2004}, }