On the geometry of the Gauss map of conformal foliations by lines
(2004) In Mathematical Proceedings of the Cambridge Philosophical Society 136. p.247-255- Abstract
- Let F be an oriented conformal foliation of connected, totally geodesic and 1-dimensional leaves in Rn+1. We prove that if n greater than or equal to 3 then the Gauss map phi: U --> S-n of F is a non-constant n-harmonic morphism if and only if it is a radial projection.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/286330
- author
- Burel, J-M
LU
and Gudmundsson, Sigmundur
LU
- organization
- publishing date
- 2004
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Mathematical Proceedings of the Cambridge Philosophical Society
- volume
- 136
- pages
- 247 - 255
- publisher
- Cambridge University Press
- external identifiers
-
- wos:000189137300016
- scopus:1042267729
- ISSN
- 1469-8064
- DOI
- 10.1017/S0305004103007060
- language
- English
- LU publication?
- yes
- id
- 76f1a70e-891d-4e2b-90cf-5ceb35d64048 (old id 286330)
- date added to LUP
- 2016-04-01 16:49:26
- date last changed
- 2025-10-14 12:28:08
@article{76f1a70e-891d-4e2b-90cf-5ceb35d64048,
abstract = {{Let F be an oriented conformal foliation of connected, totally geodesic and 1-dimensional leaves in Rn+1. We prove that if n greater than or equal to 3 then the Gauss map phi: U --> S-n of F is a non-constant n-harmonic morphism if and only if it is a radial projection.}},
author = {{Burel, J-M and Gudmundsson, Sigmundur}},
issn = {{1469-8064}},
language = {{eng}},
pages = {{247--255}},
publisher = {{Cambridge University Press}},
series = {{Mathematical Proceedings of the Cambridge Philosophical Society}},
title = {{On the geometry of the Gauss map of conformal foliations by lines}},
url = {{http://dx.doi.org/10.1017/S0305004103007060}},
doi = {{10.1017/S0305004103007060}},
volume = {{136}},
year = {{2004}},
}