Advanced

Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

Schlinkert, Hella; Westphal, Catrin; Clough, Yann LU ; László, Zoltán; Ludwig, Martin and Tscharntke, Teja (2015) In PLoS ONE 10(8).
Abstract
Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto-... (More)
Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
10
issue
8
publisher
Public Library of Science
external identifiers
  • pmid:26291614
  • wos:000359919900040
  • scopus:84942935812
ISSN
1932-6203
DOI
10.1371/journal.pone.0135928
language
English
LU publication?
yes
id
002674d4-526a-44e8-b920-cc3b55529740 (old id 7840474)
date added to LUP
2015-09-11 13:17:58
date last changed
2017-04-30 10:40:53
@article{002674d4-526a-44e8-b920-cc3b55529740,
  abstract     = {Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.},
  articleno    = {e0135928},
  author       = {Schlinkert, Hella and Westphal, Catrin and Clough, Yann and László, Zoltán and Ludwig, Martin and Tscharntke, Teja},
  issn         = {1932-6203},
  language     = {eng},
  number       = {8},
  publisher    = {Public Library of Science},
  series       = {PLoS ONE},
  title        = {Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.},
  url          = {http://dx.doi.org/10.1371/journal.pone.0135928},
  volume       = {10},
  year         = {2015},
}