Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Simulation of thermal and mechanical performance of laser cladded disc brake rotors

Athanassiou, Nicholas ; Olofsson, Ulf ; Wahlström, Jens LU orcid and Dizdar, Senad (2022) In Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 236(1). p.3-14
Abstract

Disc brakes wear during braking events and release airborne particulates. These particle emissions are currently one of the highest contributors to non-exhaust particle emissions and introduce health hazards as well as environmental contamination. To reduce this problem, wear and corrosion-resistant disc coatings have been implemented on grey cast iron brake disc rotors by using various deposition techniques such as thermal spraying and overlay welding. High thermal gradients during braking introduce risks of flaking off and cracking of thermally sprayed coatings with adhesive bonding to the substrate. Overlay welding by laser cladding offers metallurgical bonding of the coating to the substrate and other benefits that motivate laser... (More)

Disc brakes wear during braking events and release airborne particulates. These particle emissions are currently one of the highest contributors to non-exhaust particle emissions and introduce health hazards as well as environmental contamination. To reduce this problem, wear and corrosion-resistant disc coatings have been implemented on grey cast iron brake disc rotors by using various deposition techniques such as thermal spraying and overlay welding. High thermal gradients during braking introduce risks of flaking off and cracking of thermally sprayed coatings with adhesive bonding to the substrate. Overlay welding by laser cladding offers metallurgical bonding of the coating to the substrate and other benefits that motivate laser cladding as a candidate for the coating of the grey cast iron brake discs. This study aims to investigate the effect of laser cladding on the thermal and thermo-structural performance of the coated grey cast iron brake discs. Therefore, thermal and thermo-stress analysis with COMSOL Multiphysics 5.6 software is performed on braking events of grey cast iron brake discs as non-coated – reference and laser cladding coated with stainless steel welding consumables. The Results demonstrated that surface temperatures were more localised, overall higher in the laser cladded coating with over three times the stresses attained of reference grey cast iron discs. The output of the simulations has been compared by tests found in the literature. Laser cladding presented higher reliability and braking performance, nonetheless requiring the evaluation of its thermal impact on other system components.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
coating, disc brakes, friction, grey cast iron, laser cladding, thermal performance, thermal stress
in
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
volume
236
issue
1
pages
3 - 14
publisher
Professional Engineering Publishing
external identifiers
  • scopus:85104297266
ISSN
1350-6501
DOI
10.1177/13506501211009102
language
English
LU publication?
yes
id
78439627-0460-458e-8329-5eb9fe863b46
date added to LUP
2021-04-27 09:51:16
date last changed
2022-04-27 01:57:58
@article{78439627-0460-458e-8329-5eb9fe863b46,
  abstract     = {{<p>Disc brakes wear during braking events and release airborne particulates. These particle emissions are currently one of the highest contributors to non-exhaust particle emissions and introduce health hazards as well as environmental contamination. To reduce this problem, wear and corrosion-resistant disc coatings have been implemented on grey cast iron brake disc rotors by using various deposition techniques such as thermal spraying and overlay welding. High thermal gradients during braking introduce risks of flaking off and cracking of thermally sprayed coatings with adhesive bonding to the substrate. Overlay welding by laser cladding offers metallurgical bonding of the coating to the substrate and other benefits that motivate laser cladding as a candidate for the coating of the grey cast iron brake discs. This study aims to investigate the effect of laser cladding on the thermal and thermo-structural performance of the coated grey cast iron brake discs. Therefore, thermal and thermo-stress analysis with COMSOL Multiphysics 5.6 software is performed on braking events of grey cast iron brake discs as non-coated – reference and laser cladding coated with stainless steel welding consumables. The Results demonstrated that surface temperatures were more localised, overall higher in the laser cladded coating with over three times the stresses attained of reference grey cast iron discs. The output of the simulations has been compared by tests found in the literature. Laser cladding presented higher reliability and braking performance, nonetheless requiring the evaluation of its thermal impact on other system components.</p>}},
  author       = {{Athanassiou, Nicholas and Olofsson, Ulf and Wahlström, Jens and Dizdar, Senad}},
  issn         = {{1350-6501}},
  keywords     = {{coating; disc brakes; friction; grey cast iron; laser cladding; thermal performance; thermal stress}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{3--14}},
  publisher    = {{Professional Engineering Publishing}},
  series       = {{Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology}},
  title        = {{Simulation of thermal and mechanical performance of laser cladded disc brake rotors}},
  url          = {{http://dx.doi.org/10.1177/13506501211009102}},
  doi          = {{10.1177/13506501211009102}},
  volume       = {{236}},
  year         = {{2022}},
}