Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Suppression of unpolarized background interferences for Raman spectroscopy under continuous operation

Kim, Haisol LU ; Aldén, Marcus LU and Brackmann, Christian LU (2021) In Optics Express 29(2). p.1048-1063
Abstract

A time-resolving filtering technique developed to improve background suppression in Raman spectroscopy is presented and characterized. The technique enables separation of signal contributions via their polarization dependency by the addition of a waveplate to a normal measurement system and data post-processing. As a result, background interferences of broadband laser-induced fluorescence and incandescence, as well as flame luminosity and blackbody radiation, were effectively suppressed from Raman spectra. Experimental setting parameters of the method were investigated under well-controlled conditions to assess their impact on the background-filtering ability, and the overall trend was understood. The fluorescence background was... (More)

A time-resolving filtering technique developed to improve background suppression in Raman spectroscopy is presented and characterized. The technique enables separation of signal contributions via their polarization dependency by the addition of a waveplate to a normal measurement system and data post-processing. As a result, background interferences of broadband laser-induced fluorescence and incandescence, as well as flame luminosity and blackbody radiation, were effectively suppressed from Raman spectra. Experimental setting parameters of the method were investigated under well-controlled conditions to assess their impact on the background-filtering ability, and the overall trend was understood. The fluorescence background was effectively suppressed for all investigated settings of modulation period, number of accumulations, and recording duration, with the spectrum quality preserved after the filtering. For practical application, the method was tested for measurements in a sooting flame accompanied by a strong luminosity and interfering laser-induced background signals. The technique resulted in a 200-fold decrease of the background and allowed for quantitative analyses of concentrations and temperatures from the filtered data. Thus, the method shows strong potential to extend the applicability of Raman spectroscopy, in particular for in situ diagnostics under challenging experimental conditions.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Optics Express
volume
29
issue
2
pages
16 pages
publisher
Optical Society of America
external identifiers
  • pmid:33726327
  • scopus:85099121116
ISSN
1094-4087
DOI
10.1364/OE.414677
language
English
LU publication?
yes
id
78c336c3-f6cb-4315-972c-d7015dbe5983
date added to LUP
2021-01-19 11:31:07
date last changed
2024-06-13 05:40:55
@article{78c336c3-f6cb-4315-972c-d7015dbe5983,
  abstract     = {{<p>A time-resolving filtering technique developed to improve background suppression in Raman spectroscopy is presented and characterized. The technique enables separation of signal contributions via their polarization dependency by the addition of a waveplate to a normal measurement system and data post-processing. As a result, background interferences of broadband laser-induced fluorescence and incandescence, as well as flame luminosity and blackbody radiation, were effectively suppressed from Raman spectra. Experimental setting parameters of the method were investigated under well-controlled conditions to assess their impact on the background-filtering ability, and the overall trend was understood. The fluorescence background was effectively suppressed for all investigated settings of modulation period, number of accumulations, and recording duration, with the spectrum quality preserved after the filtering. For practical application, the method was tested for measurements in a sooting flame accompanied by a strong luminosity and interfering laser-induced background signals. The technique resulted in a 200-fold decrease of the background and allowed for quantitative analyses of concentrations and temperatures from the filtered data. Thus, the method shows strong potential to extend the applicability of Raman spectroscopy, in particular for in situ diagnostics under challenging experimental conditions.</p>}},
  author       = {{Kim, Haisol and Aldén, Marcus and Brackmann, Christian}},
  issn         = {{1094-4087}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{1048--1063}},
  publisher    = {{Optical Society of America}},
  series       = {{Optics Express}},
  title        = {{Suppression of unpolarized background interferences for Raman spectroscopy under continuous operation}},
  url          = {{https://lup.lub.lu.se/search/files/119445173/oe_29_2_1048.pdf}},
  doi          = {{10.1364/OE.414677}},
  volume       = {{29}},
  year         = {{2021}},
}