Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Physicochemical Treatment of Municipal Wastewater : From Direct Membrane Filtration to Adsorption of Organic Micropollutants

Gidstedt, Simon LU orcid (2022)
Abstract
Pharmaceutical residues and other organic micropollutants are transported via municipal wastewater to wastewater treatment plants (WWTPs). However, current treatment processes are not designed to remove organic micropollutants, and several such compounds have been found in recipients, where they can have negative effects on aquatic organisms. Additional processes are therefore required to reduce the release of organic micropollutants to the environment.
Additional treatment is likely to increase the energy demand at WWTPs. However, municipal wastewater contains organic matter that can be used for energy production in the form of biogas. Using physicochemical treatment methods would allow more of the organic content to be separated from... (More)
Pharmaceutical residues and other organic micropollutants are transported via municipal wastewater to wastewater treatment plants (WWTPs). However, current treatment processes are not designed to remove organic micropollutants, and several such compounds have been found in recipients, where they can have negative effects on aquatic organisms. Additional processes are therefore required to reduce the release of organic micropollutants to the environment.
Additional treatment is likely to increase the energy demand at WWTPs. However, municipal wastewater contains organic matter that can be used for energy production in the form of biogas. Using physicochemical treatment methods would allow more of the organic content to be separated from the wastewater, increasing biogas production compared to conventional treatment with activated sludge.
This dissertation discusses the potential and limitations of physicochemical wastewater treatment on pilot scale by chemically enhanced primary treatment (CEPT) with microsieving, direct membrane filtration (DMF) and adsorption with activated carbon.
The results of pilot-scale tests showed that optimized CEPT with microsieving was very important for the high retention of particles, organic content and phosphorus, and for higher flux in subsequent DMF. However, the fouling of the membranes was severe, which prevented long-term operation. Biomethane produced from the sludge after microsieving could potentially produce enough energy to cover ~60% of the electricity required for such a treatment train (CEPT with microsieving and DMF). Supplementary biological treatment downstream of the treatment train could be used to reduce the remaining oxygen demand, and thus also reduce the dissolved organic content. The removal of organic micropollutants by CEPT with microsieving and DMF was small. However, by subsequent filtration through granular activated carbon, a high removal could be achieved. The carbon filter could only be operated for 4 days due to the fouling of the membranes, and longer filtration times are suggested in future research.
Laboratory-scale tests using powdered activated carbon showed that the tighter filtration used in the pre-treatment, the more organic micropollutants could be adsorbed. Ultrafiltration was better than microfiltration, which was better than microsieving. This was related to lower concentrations of dissolved organic matter in the effluents the finer the filter used. The adsorption was highest in the effluent from a full-scale WWTP using biological treatment. This effluent had the lowest concentration of dissolved organic matter of all effluents. Finally, it was observed that granular activated carbon could be used to remove organic micropollutants after the WWTP and that the removals were similar to that by using powdered activated carbon. (Less)
Abstract (Swedish)
Populärvetenskaplig sammanfattning
Avloppsvatten med läkemedelsrester renas med filter och aktivt kol
VA-bolagen står inför flera utmaningar vad gäller rening av avloppsvatten. Till exempel att minska energianvändningen på reningsverken, samt att rena avloppsvattnet från läkemedelsrester. I den här studien har olika typer av filtrering i kombination med aktivt kol testats med målet att rena från läkemedelsrester samt förbättra energibalansen på reningsverk.

Läkemedelsrester är en typ av mikroföroreningar som finns kvar i urin och avföring efter konsumtion och som transporteras med avloppsvattnet till reningsverken. Tyvärr så renas bara en bråkdel av läkemedelsresterna och man har uppmätt... (More)
Populärvetenskaplig sammanfattning
Avloppsvatten med läkemedelsrester renas med filter och aktivt kol
VA-bolagen står inför flera utmaningar vad gäller rening av avloppsvatten. Till exempel att minska energianvändningen på reningsverken, samt att rena avloppsvattnet från läkemedelsrester. I den här studien har olika typer av filtrering i kombination med aktivt kol testats med målet att rena från läkemedelsrester samt förbättra energibalansen på reningsverk.

Läkemedelsrester är en typ av mikroföroreningar som finns kvar i urin och avföring efter konsumtion och som transporteras med avloppsvattnet till reningsverken. Tyvärr så renas bara en bråkdel av läkemedelsresterna och man har uppmätt relativt höga koncentrationer av läkemedelsrester i vattendrag efter reningsverk där de utgör en fara för akvatiska miljön. Det finns undersökningar där man sett att hormonstörande ämnen från preventivmedel påverkat könsfördelningen hos vattenlevande djur. Man har också sett att ångestdämpande läkemedel gjort fiskar djärvare vilket påverkat deras chanser att överleva.

Många reningsverk i världen använder mikroorganismer för att behandla avloppsvatten. En behandling som fungerar bra för att bryta ned föroreningar (till exempel organiskt material) till koldioxid men som fungerar dåligt för att rena från läkemedelsrester. Rening med mikroorganismer kräver också att vattnet luftas vilket är energikrävande. I vår studie använde vi i stället filtrering för att separera och ta vara på organiskt material från avloppsvattnet. Efter att det organiska materialet filtrerats bort kan det omvandlas till energi i form av biogas genom att det rötas. Alltså ett plus i energibalansen på ett reningsverk.

Vanlig filtrering tar dock inte bort läkemedelsrester utan en extra behandling behövs efter en filtrering, eller för den delen, efter en behandling med mikroorganismer. För detta ändamål kan man använda aktivt kol i en process som kallas adsorption
där läkemedelsresterna fastnar på kolet. I vår studie ville vi testa om filtrering av avloppsvatten fungerar lika bra som rening med mikroorganismer som en förbehandling till aktivt kol.

Genom experiment såg vi att filtrering fungerade bra som förbehandling till aktivt kol men att rening med mikroorganismer fungerade bättre. Anledningen var att efter filtrering fanns det mer lösta ämnen kvar i avloppsvattnet än efter rening med
mikroorganismer och att dessa ämnen störde reningen från läkemedelsrester med aktivt kol. I experimenten såg vi också att desto finare filtrering som användes desto mer läkemedelsrester kunde tas bort i en efterföljande behandling med aktivt kol.

Med filtrering och aktivt kol kan vi alltså ta vara på det organiska materialet i avloppsvattnet för att producera biogas samt förhindra utsläppen av läkemedelsrester och därmed skydda hav, sjöar och vattendrag från att bli förorenade. (Less)
Please use this url to cite or link to this publication:
author
supervisor
organization
alternative title
Fysisk och kemisk behandling av kommunalt avloppsvatten : Från direkt membranfiltrering till adsorption av organiska mikroföroreningar
publishing date
type
Thesis
publication status
published
subject
keywords
Direkt membranfiltrering, Granulärt aktivt kol, Avloppsvatten, Kemisk förbehandling, Mikrosilning, Direct membrane filtration, Granular activated carbon, Wastewater, Chemically enhanced primary treatment, Microsieving
pages
108 pages
publisher
Lund University (Media-Tryck)
ISBN
978-91-7422-864-9
978-91-7422-865-6
project
Physicochemical Treatment of Municipal Wastewater - From Direct Membrane Filtration to Adsorption of Organic Micropollutants
language
English
LU publication?
yes
id
7a4d580a-e68f-47bf-8768-09a49050dd6e
date added to LUP
2022-02-11 14:06:04
date last changed
2022-02-23 02:29:29
@misc{7a4d580a-e68f-47bf-8768-09a49050dd6e,
  abstract     = {{Pharmaceutical residues and other organic micropollutants are transported via municipal wastewater to wastewater treatment plants (WWTPs). However, current treatment processes are not designed to remove organic micropollutants, and several such compounds have been found in recipients, where they can have negative effects on aquatic organisms. Additional processes are therefore required to reduce the release of organic micropollutants to the environment.<br/>Additional treatment is likely to increase the energy demand at WWTPs. However, municipal wastewater contains organic matter that can be used for energy production in the form of biogas. Using physicochemical treatment methods would allow more of the organic content to be separated from the wastewater, increasing biogas production compared to conventional treatment with activated sludge.<br/>This dissertation discusses the potential and limitations of physicochemical wastewater treatment on pilot scale by chemically enhanced primary treatment (CEPT) with microsieving, direct membrane filtration (DMF) and adsorption with activated carbon.<br/>The results of pilot-scale tests showed that optimized CEPT with microsieving was very important for the high retention of particles, organic content and phosphorus, and for higher flux in subsequent DMF. However, the fouling of the membranes was severe, which prevented long-term operation. Biomethane produced from the sludge after microsieving could potentially produce enough energy to cover ~60% of the electricity required for such a treatment train (CEPT with microsieving and DMF). Supplementary biological treatment downstream of the treatment train could be used to reduce the remaining oxygen demand, and thus also reduce the dissolved organic content. The removal of organic micropollutants by CEPT with microsieving and DMF was small. However, by subsequent filtration through granular activated carbon, a high removal could be achieved. The carbon filter could only be operated for 4 days due to the fouling of the membranes, and longer filtration times are suggested in future research.<br/>Laboratory-scale tests using powdered activated carbon showed that the tighter filtration used in the pre-treatment, the more organic micropollutants could be adsorbed. Ultrafiltration was better than microfiltration, which was better than microsieving. This was related to lower concentrations of dissolved organic matter in the effluents the finer the filter used. The adsorption was highest in the effluent from a full-scale WWTP using biological treatment. This effluent had the lowest concentration of dissolved organic matter of all effluents. Finally, it was observed that granular activated carbon could be used to remove organic micropollutants after the WWTP and that the removals were similar to that by using powdered activated carbon.}},
  author       = {{Gidstedt, Simon}},
  isbn         = {{978-91-7422-864-9}},
  keywords     = {{Direkt membranfiltrering; Granulärt aktivt kol; Avloppsvatten; Kemisk förbehandling; Mikrosilning; Direct membrane filtration; Granular activated carbon; Wastewater; Chemically enhanced primary treatment; Microsieving}},
  language     = {{eng}},
  note         = {{Licentiate Thesis}},
  publisher    = {{Lund University (Media-Tryck)}},
  title        = {{Physicochemical Treatment of Municipal Wastewater : From Direct Membrane Filtration to Adsorption of Organic Micropollutants}},
  url          = {{https://lup.lub.lu.se/search/files/113974010/Licentiatavhandling_Simon_Gidstedt.pdf}},
  year         = {{2022}},
}