Advanced

Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality

Zamani, Mahdi ; Tütüncüoglu, Gözde ; Martí-Sánchez, Sara ; Francaviglia, Luca ; Güniat, Lucas ; Ghisalberti, Lea ; Potts, Heidi LU ; Friedl, Martin ; Markov, Edoardo and Kim, Wonjong , et al. (2018) In Nanoscale 10(36). p.17080-17091
Abstract

Compound semiconductors exhibit an intrinsic polarity, as a consequence of the ionicity of their bonds. Nanowires grow mostly along the (111) direction for energetic reasons. Arsenide and phosphide nanowires grow along (111)B, implying a group V termination of the (111) bilayers. Polarity engineering provides an additional pathway to modulate the structural and optical properties of semiconductor nanowires. In this work, we demonstrate for the first time the growth of Ga-assisted GaAs nanowires with (111)A-polarity, with a yield of up to ∼50%. This goal is achieved by employing highly Ga-rich conditions which enable proper engineering of the energies of A and B-polar surfaces. We also show that A-polarity growth suppresses the stacking... (More)

Compound semiconductors exhibit an intrinsic polarity, as a consequence of the ionicity of their bonds. Nanowires grow mostly along the (111) direction for energetic reasons. Arsenide and phosphide nanowires grow along (111)B, implying a group V termination of the (111) bilayers. Polarity engineering provides an additional pathway to modulate the structural and optical properties of semiconductor nanowires. In this work, we demonstrate for the first time the growth of Ga-assisted GaAs nanowires with (111)A-polarity, with a yield of up to ∼50%. This goal is achieved by employing highly Ga-rich conditions which enable proper engineering of the energies of A and B-polar surfaces. We also show that A-polarity growth suppresses the stacking disorder along the growth axis. This results in improved optical properties, including the formation of AlGaAs quantum dots with two orders or magnitude higher brightness. Overall, this work provides new grounds for the engineering of nanowire growth directions, crystal quality and optical functionality.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
publishing date
type
Contribution to journal
publication status
published
in
Nanoscale
volume
10
issue
36
pages
12 pages
publisher
Royal Society of Chemistry
external identifiers
  • scopus:85054015577
  • pmid:30179246
ISSN
2040-3372
DOI
10.1039/c8nr05787g
language
English
LU publication?
no
id
7cdc29fd-5a3d-4ced-b0ea-6e45dbdc1bc1
date added to LUP
2019-05-15 09:49:31
date last changed
2020-02-19 05:28:45
@article{7cdc29fd-5a3d-4ced-b0ea-6e45dbdc1bc1,
  abstract     = {<p>Compound semiconductors exhibit an intrinsic polarity, as a consequence of the ionicity of their bonds. Nanowires grow mostly along the (111) direction for energetic reasons. Arsenide and phosphide nanowires grow along (111)B, implying a group V termination of the (111) bilayers. Polarity engineering provides an additional pathway to modulate the structural and optical properties of semiconductor nanowires. In this work, we demonstrate for the first time the growth of Ga-assisted GaAs nanowires with (111)A-polarity, with a yield of up to ∼50%. This goal is achieved by employing highly Ga-rich conditions which enable proper engineering of the energies of A and B-polar surfaces. We also show that A-polarity growth suppresses the stacking disorder along the growth axis. This results in improved optical properties, including the formation of AlGaAs quantum dots with two orders or magnitude higher brightness. Overall, this work provides new grounds for the engineering of nanowire growth directions, crystal quality and optical functionality.</p>},
  author       = {Zamani, Mahdi and Tütüncüoglu, Gözde and Martí-Sánchez, Sara and Francaviglia, Luca and Güniat, Lucas and Ghisalberti, Lea and Potts, Heidi and Friedl, Martin and Markov, Edoardo and Kim, Wonjong and Leran, Jean-Baptiste and Dubrovskii, Vladimir G and Arbiol, Jordi and Fontcuberta I Morral, Anna},
  issn         = {2040-3372},
  language     = {eng},
  month        = {09},
  number       = {36},
  pages        = {17080--17091},
  publisher    = {Royal Society of Chemistry},
  series       = {Nanoscale},
  title        = {Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality},
  url          = {http://dx.doi.org/10.1039/c8nr05787g},
  doi          = {10.1039/c8nr05787g},
  volume       = {10},
  year         = {2018},
}