Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Expression and role of the cytokine tyrosine kinase receptor flt3 in early hematopoiesis

Adolfsson, Jörgen LU (2004)
Abstract
Mature blood cells are crucial for life, but they have a short lifetime and thus have to be replaced. These mature blood cells are produced by lineage restricted progenitors, which themselves are generated by rare multipotent hematopoietic stem cells (HSCs) in a highly dynamic process called hematopoiesis. In addition to the ability of HSCs to generate all blood cell lineages, they possess the unique property of self-renewal, a process in which a HSC, during a cell division generate at least one daughter cell identical to the parental cell. The maintenance and regulation of HSCs and earliest stages of lineage development are partly controlled by soluble and membrane bound regulators called cytokines. The focus in this thesis has been on... (More)
Mature blood cells are crucial for life, but they have a short lifetime and thus have to be replaced. These mature blood cells are produced by lineage restricted progenitors, which themselves are generated by rare multipotent hematopoietic stem cells (HSCs) in a highly dynamic process called hematopoiesis. In addition to the ability of HSCs to generate all blood cell lineages, they possess the unique property of self-renewal, a process in which a HSC, during a cell division generate at least one daughter cell identical to the parental cell. The maintenance and regulation of HSCs and earliest stages of lineage development are partly controlled by soluble and membrane bound regulators called cytokines. The focus in this thesis has been on the cytokine tyrosine kinase receptor flt3 and its ligand and their role in regulating HSCs and the earliest progenitors in adult murine bone marrow (BM). Earlier studies had implicated a role for flt3 and its ligand in the maintenance of HSCs. When studying mice with targeted deletion of the flt3 ligand (FL), we failed to find any role of flt3 and its ligand in HSC regulation. However, the generation of the common lymphoid progenitor (CLP) and earliest stages of B- and T cell development were severely affected, but not myeloid progenitors or later stages of lymphoid development. Based on flt3 expression, we subfractionated the Lin(-)Sca-1(+)c-kit(+) (LSK) stem cell pool in mouse bone marrow. In contrast to LSKflt3- cells, which sustained multilineage long-term reconstitution, LSKflt3+ cells generated only short-term lymphoid dominated reconstitution when injected into lethally ablated recipients. We also demonstrated the hierarchical relationship at the earliest stages of hematopoiesis, in that LSKflt3- HSCs generate LSKflt3+ cells, which generate the CLP but not the LSKflt3- cells. In the classical model of the hematopoietic hierarchy, the first lineage commitment step of HSCs results in a strict separation into distinct lymphoid and myeloid pathways, generating the recently identified CLP and the common myeloid progenitor (CMP). However, in sharp contrast to LSKflt3-, cells which could generate all blood cell lineages, LSK cells expressing flt3 could not generate megakaryocytes or erythroid cells. Thus, these finding together with the above mentioned relationship between the LSKflt3-, LSKflt3+ and CLP do not support the classical hematopoietic hierarchy model depicting the first lineage commitment generating a strict separation of lymphoid and myeloid pathways. The LSK population contains all LT-HSC activity. However, this population is not homogenous neither in phenotype or function and it has been proposed to contain at least two populations, one with long-term reconstitution (LTR) potential and one with short-term reconstitution potential. Based on the expression of CD34 and flt3 within the adult LSK stem cell pool we were able to subfractionate short-term hematopoietic stem cells (ST-HSC) from the LT-HSCs. In contrast to the LSKCD34-flt3- and LSKCD34+flt3+ cells, the LSKCD34+flt3- is highly enriched for CFU-S activity and capable of rescuing lethally irradiated recipients, fulfilling the criteria of ST-HSCs. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Blodet består av olika typer av celler med olika funktioner. De röda blodkropparna transporterar syre till alla delar av kroppen, blodplättar stoppar blödningar och en rad olika vita blodkroppar försvarar oss från olika typer av angrepp från till exempel virus eller bakterier. Generellt för alla dessa olika typer av celler är att de är kortlivade och måste ersättas kontinuerligt. Dessa celler bildas från omogna så kallade progenitorer som i sin tur bildas från ännu mer omogna progenitorer. Denna mognadsprocess kallas hematopoes. Högst upp i hierarkin av blodceller har vi den hematopoietiska stam cellen som kan ge upphov till alla typer av cellerna i blodet. Den hematopoietiska stam cellen finns i... (More)
Popular Abstract in Swedish

Blodet består av olika typer av celler med olika funktioner. De röda blodkropparna transporterar syre till alla delar av kroppen, blodplättar stoppar blödningar och en rad olika vita blodkroppar försvarar oss från olika typer av angrepp från till exempel virus eller bakterier. Generellt för alla dessa olika typer av celler är att de är kortlivade och måste ersättas kontinuerligt. Dessa celler bildas från omogna så kallade progenitorer som i sin tur bildas från ännu mer omogna progenitorer. Denna mognadsprocess kallas hematopoes. Högst upp i hierarkin av blodceller har vi den hematopoietiska stam cellen som kan ge upphov till alla typer av cellerna i blodet. Den hematopoietiska stam cellen finns i benmärgen hos en vuxen individ och är väldigt få, cirka 1 på 20000 benmärgsceller. Dessa celler har den unika egenskapen att självförnyas. Det innebär att de vid en celldelning kan ge upphov till nya stamceller med samma egenskaper som modercellen och detta är ett sätt att bevara antalet stamceller i benmärgen. En stam cell måste också kunna ge upphov till omogna celler (som inte är stamceller) som sedan i sin tur ger upphov till andra omogna celler för att sedan till slut bilda mogna blodceller i en process som kallas differentiering. I denna avhandling karakteriseras stamcellernas första steg från att vara en stam cell till en omogen progenitor. Reglering av dessa olika processer styrs bland annat av proteiner på cellens yta, så kallade receptorer. Denna avhandling är fokuserad på en receptor, flt3 som finns på vissa cellers yta. I den första artikeln studera vi betydelsen av flt3 för bildandet av B celler från stamceller och de tidigaste stadierna av omogna progenitorer. B celler är de celler som i moget tillstånd producera antikroppar mot olika kroppsfrämmande föremål såsom bakterier. Vissa resultat från den studien uppenbarade för oss att stamceller troligtvis inte uttrycker flt3 på sin cell yta. I artikel II och III demonstrerar vi med all tydlighet att stamceller inte uttrycker flt3 på cell ytan. Detta var något förvånande då tidigare studier påvisade att vissa stamceller hade denna receptor på cellytan. Förvånande nog så har man använt flt3-ligand, som är det protein som binder till flt3 och ger signal in i cellen, för att expandera stamceller i odlingskultur. Den hematopoetiska stamcellen kan ge upphov till alla mogna celler i blodet. Det sker via steg där olika progenitorer differentierar sig till en specifik typ av cell, till exempel B celler. Processen att gå från en cell (stamcellen) som kan ge upphov till alla celltyper i blodet, till en cell som bara kan ge upphov till en celltyp, måste ske via steg där olika möjligheter till bildandet av vissa celltyper försvinner. Detta första steg av linje restriktion leder till, i den klassiska modellen av hematopoes, till att vi får en strikt separation av en progenitor cell som endast kan producera lymfocyter och en progenitor cell som endast kan generera myelocyter. Det vi visar i artikel 4 är att detta inte är en helt korrekt beskrivning av hur differentieringsprocessen går till. I artikel 5 lyckas vi skilja ut en cell från alla andra celler i benmärgen som kan ha stor betydelse för patienter som genomgår en behandling med strålning eller kemoterapi. Patienter förlorar tillfälligt sin blodbildande förmåga av behandlingen och denna förmåga måste ersättas. Det görs genom en så kallad benmärgstransplantation där patienten får nya stamceller som ersättning för den förlorade. Dessa patienter lider ofta av blodbrist och lågt antal vita blodkroppar samt plättar innan stamcellerna har hunnit producera tillräckligt många celler med många komplikationer som följd. Den cell som vi har identifierat är ingen stamcell men har en mycket bättre förmåga att snabbt producera nya mogna celler. Denna celltyp, om den kan isoleras från människor, kan komma att ha mycket stor betydelse för patienter som genomgår en behandling med strålning eller kemoterapi. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Enver, Tariq, John Radcliffe Hospital, Oxford, UK
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Hematologi, extracellulära vätskor, extracellular fluids, Haematology, flt3, cytokine, Hematopoiesis, stem cells
pages
180 pages
publisher
Jörgen Adolfsson, Stem Cell Laboratory, BMC B10, Klinikg 26, 22184 Lund
defense location
Segerfalksalen, Wallenberg Neurocentrum, Sölvegatan 17, Lund
defense date
2004-09-25 09:00:00
ISBN
91-628-6188-3
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Hematopoietic Stem Cell Laboratory (013022012)
id
7d1d271f-b2e4-4f79-ac17-432db93eb205 (old id 467266)
date added to LUP
2016-04-04 12:01:27
date last changed
2018-11-21 21:08:34
@phdthesis{7d1d271f-b2e4-4f79-ac17-432db93eb205,
  abstract     = {{Mature blood cells are crucial for life, but they have a short lifetime and thus have to be replaced. These mature blood cells are produced by lineage restricted progenitors, which themselves are generated by rare multipotent hematopoietic stem cells (HSCs) in a highly dynamic process called hematopoiesis. In addition to the ability of HSCs to generate all blood cell lineages, they possess the unique property of self-renewal, a process in which a HSC, during a cell division generate at least one daughter cell identical to the parental cell. The maintenance and regulation of HSCs and earliest stages of lineage development are partly controlled by soluble and membrane bound regulators called cytokines. The focus in this thesis has been on the cytokine tyrosine kinase receptor flt3 and its ligand and their role in regulating HSCs and the earliest progenitors in adult murine bone marrow (BM). Earlier studies had implicated a role for flt3 and its ligand in the maintenance of HSCs. When studying mice with targeted deletion of the flt3 ligand (FL), we failed to find any role of flt3 and its ligand in HSC regulation. However, the generation of the common lymphoid progenitor (CLP) and earliest stages of B- and T cell development were severely affected, but not myeloid progenitors or later stages of lymphoid development. Based on flt3 expression, we subfractionated the Lin(-)Sca-1(+)c-kit(+) (LSK) stem cell pool in mouse bone marrow. In contrast to LSKflt3- cells, which sustained multilineage long-term reconstitution, LSKflt3+ cells generated only short-term lymphoid dominated reconstitution when injected into lethally ablated recipients. We also demonstrated the hierarchical relationship at the earliest stages of hematopoiesis, in that LSKflt3- HSCs generate LSKflt3+ cells, which generate the CLP but not the LSKflt3- cells. In the classical model of the hematopoietic hierarchy, the first lineage commitment step of HSCs results in a strict separation into distinct lymphoid and myeloid pathways, generating the recently identified CLP and the common myeloid progenitor (CMP). However, in sharp contrast to LSKflt3-, cells which could generate all blood cell lineages, LSK cells expressing flt3 could not generate megakaryocytes or erythroid cells. Thus, these finding together with the above mentioned relationship between the LSKflt3-, LSKflt3+ and CLP do not support the classical hematopoietic hierarchy model depicting the first lineage commitment generating a strict separation of lymphoid and myeloid pathways. The LSK population contains all LT-HSC activity. However, this population is not homogenous neither in phenotype or function and it has been proposed to contain at least two populations, one with long-term reconstitution (LTR) potential and one with short-term reconstitution potential. Based on the expression of CD34 and flt3 within the adult LSK stem cell pool we were able to subfractionate short-term hematopoietic stem cells (ST-HSC) from the LT-HSCs. In contrast to the LSKCD34-flt3- and LSKCD34+flt3+ cells, the LSKCD34+flt3- is highly enriched for CFU-S activity and capable of rescuing lethally irradiated recipients, fulfilling the criteria of ST-HSCs.}},
  author       = {{Adolfsson, Jörgen}},
  isbn         = {{91-628-6188-3}},
  keywords     = {{Hematologi; extracellulära vätskor; extracellular fluids; Haematology; flt3; cytokine; Hematopoiesis; stem cells}},
  language     = {{eng}},
  publisher    = {{Jörgen Adolfsson, Stem Cell Laboratory, BMC B10, Klinikg 26, 22184 Lund}},
  school       = {{Lund University}},
  title        = {{Expression and role of the cytokine tyrosine kinase receptor flt3 in early hematopoiesis}},
  year         = {{2004}},
}