Advanced

An Assessment of Turbulence Models for Prediction of Conjugate Heat Transfer for a Turbine Vane with Internal Cooling Channels

Zheng, Shaofei; Song, Yidan; Xie, Gongnan and Sundén, Bengt LU (2015) In Heat Transfer Research 46(11). p.1039-1064
Abstract
In this study, five models, including the standard k-epsilon (SKE), realizable k-epsilon (RKE), SST k-omega, transition k-kl-omega, and the v(2)f model, are considered to simulate air flow and heat transfer of a turbine guide vane. The object in this paper is the well-studied NASA C3X turbine vane, for which experimental data are available. Ten internal cylindrical cooling channels are used to cool the blade. Three-dimensional temperature distributions of the turbine vane were obtained by a fluid-solid conjugated model including the external aerodynamic flow, internal convection and heat conduction region within the metal vane. In order to validate the computational results, the temperature distributions, static pressure distributions, and... (More)
In this study, five models, including the standard k-epsilon (SKE), realizable k-epsilon (RKE), SST k-omega, transition k-kl-omega, and the v(2)f model, are considered to simulate air flow and heat transfer of a turbine guide vane. The object in this paper is the well-studied NASA C3X turbine vane, for which experimental data are available. Ten internal cylindrical cooling channels are used to cool the blade. Three-dimensional temperature distributions of the turbine vane were obtained by a fluid-solid conjugated model including the external aerodynamic flow, internal convection and heat conduction region within the metal vane. In order to validate the computational results, the temperature distributions, static pressure distributions, and heat transfer coefficient distributions along the vane external mid-span surface are compared with experimental data. The 4-5-2-1 arrangement of the C3X cascade is selected, and the fluid is assumed to be an ideal gas. The results reveal that the SST k-omega turbulence model performs quite well in predicting the conjugate heat transfer. Detailed heat transfer distributions in the main passage are also shown. The representative transitional behavior of the C3X vane on both pressure and suction surfaces is further analyzed. It suggests that the transition behavior plays a significant role in predictions of the boundary-layer behavior, wall temperature distribution, and heat transfer performance. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
turbulence model, guide vane, transitional behavior, conjugate heat, transfer
in
Heat Transfer Research
volume
46
issue
11
pages
1039 - 1064
publisher
Begell House
external identifiers
  • wos:000360711300004
  • scopus:84942923949
ISSN
1064-2285
DOI
10.1615/HeatTransRes.2015007514
language
English
LU publication?
yes
id
9d4a9e16-6c3e-476d-a26b-65c2409a4585 (old id 8080606)
date added to LUP
2015-10-26 15:17:42
date last changed
2017-01-01 04:15:41
@article{9d4a9e16-6c3e-476d-a26b-65c2409a4585,
  abstract     = {In this study, five models, including the standard k-epsilon (SKE), realizable k-epsilon (RKE), SST k-omega, transition k-kl-omega, and the v(2)f model, are considered to simulate air flow and heat transfer of a turbine guide vane. The object in this paper is the well-studied NASA C3X turbine vane, for which experimental data are available. Ten internal cylindrical cooling channels are used to cool the blade. Three-dimensional temperature distributions of the turbine vane were obtained by a fluid-solid conjugated model including the external aerodynamic flow, internal convection and heat conduction region within the metal vane. In order to validate the computational results, the temperature distributions, static pressure distributions, and heat transfer coefficient distributions along the vane external mid-span surface are compared with experimental data. The 4-5-2-1 arrangement of the C3X cascade is selected, and the fluid is assumed to be an ideal gas. The results reveal that the SST k-omega turbulence model performs quite well in predicting the conjugate heat transfer. Detailed heat transfer distributions in the main passage are also shown. The representative transitional behavior of the C3X vane on both pressure and suction surfaces is further analyzed. It suggests that the transition behavior plays a significant role in predictions of the boundary-layer behavior, wall temperature distribution, and heat transfer performance.},
  author       = {Zheng, Shaofei and Song, Yidan and Xie, Gongnan and Sundén, Bengt},
  issn         = {1064-2285},
  keyword      = {turbulence model,guide vane,transitional behavior,conjugate heat,transfer},
  language     = {eng},
  number       = {11},
  pages        = {1039--1064},
  publisher    = {Begell House},
  series       = {Heat Transfer Research},
  title        = {An Assessment of Turbulence Models for Prediction of Conjugate Heat Transfer for a Turbine Vane with Internal Cooling Channels},
  url          = {http://dx.doi.org/10.1615/HeatTransRes.2015007514},
  volume       = {46},
  year         = {2015},
}