Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Real-time tracking of convective rainfall properties using a two-dimensional advection-diffusion model

Kawamura, Akira ; Jinno, Kenji ; Berndtsson, Ronny LU orcid and Furukawa, Takashi (1997) In Journal of Hydrology 203(1-4). p.109-118
Abstract

There is a need to improve rainfall forecasting capabilities for small ungaged urban catchments to reduce flooding hazards and pollution release. For this purpose, information is required on small-scale and short-term convective cell behavior. We use a two-dimensional stochastic advection-diffusion model to parameterize the space-time rainfall intensity from convective rainfall. The rainfall intensity resulting from different separable components of the rain cell, such as apparent turbulent diffusion and development/decay of rainfall intensity, is quantified for 10 observed and, for southern Sweden, representative high-intensity rainfall events. This is done following a Lagrangian approach. It is shown the used model was able to respond... (More)

There is a need to improve rainfall forecasting capabilities for small ungaged urban catchments to reduce flooding hazards and pollution release. For this purpose, information is required on small-scale and short-term convective cell behavior. We use a two-dimensional stochastic advection-diffusion model to parameterize the space-time rainfall intensity from convective rainfall. The rainfall intensity resulting from different separable components of the rain cell, such as apparent turbulent diffusion and development/decay of rainfall intensity, is quantified for 10 observed and, for southern Sweden, representative high-intensity rainfall events. This is done following a Lagrangian approach. It is shown the used model was able to respond to rapid changes in observed rainfall intensity in both space and time, thus giving a small average root-mean-square error for all 10 events (0.06 mm min-1). When dividing the total rainfall intensity into apparent turbulent diffusion and development/decay terms, respectively, it was shown that D(y,center) and γ(center) contribute approximately equally to the observed rainfall intensity. The D(x,center) is usually only half the value of D(y,center), thus indicating less intensity contribution from this term and that the general elliptical shape of rain cells are elongated in the direction of movement. The observations indicate that the cumulus stage represents half and the dissipating stage half of the total cell development, respectively. The results can be used as first choice of parameter values when modeling rain cell movement over ungaged areas and the presented methodology can be used to study the effects of different cell components on total rainfall intensity.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
High-intensity rainfall, Real-time prediction
in
Journal of Hydrology
volume
203
issue
1-4
pages
10 pages
publisher
Elsevier
external identifiers
  • scopus:0031593057
ISSN
0022-1694
DOI
10.1016/S0022-1694(97)00088-7
language
English
LU publication?
yes
additional info
Funding Information: This cooperative study was supported by the Scandinavia-Japan Sasakawa Foundation and the Swedish Natural Science Research Council.
id
80ae9306-2f9a-4778-8319-0417641d1082
date added to LUP
2023-08-17 15:26:00
date last changed
2023-08-21 16:39:24
@article{80ae9306-2f9a-4778-8319-0417641d1082,
  abstract     = {{<p>There is a need to improve rainfall forecasting capabilities for small ungaged urban catchments to reduce flooding hazards and pollution release. For this purpose, information is required on small-scale and short-term convective cell behavior. We use a two-dimensional stochastic advection-diffusion model to parameterize the space-time rainfall intensity from convective rainfall. The rainfall intensity resulting from different separable components of the rain cell, such as apparent turbulent diffusion and development/decay of rainfall intensity, is quantified for 10 observed and, for southern Sweden, representative high-intensity rainfall events. This is done following a Lagrangian approach. It is shown the used model was able to respond to rapid changes in observed rainfall intensity in both space and time, thus giving a small average root-mean-square error for all 10 events (0.06 mm min<sup>-1</sup>). When dividing the total rainfall intensity into apparent turbulent diffusion and development/decay terms, respectively, it was shown that D(y,center) and γ(center) contribute approximately equally to the observed rainfall intensity. The D(x,center) is usually only half the value of D(y,center), thus indicating less intensity contribution from this term and that the general elliptical shape of rain cells are elongated in the direction of movement. The observations indicate that the cumulus stage represents half and the dissipating stage half of the total cell development, respectively. The results can be used as first choice of parameter values when modeling rain cell movement over ungaged areas and the presented methodology can be used to study the effects of different cell components on total rainfall intensity.</p>}},
  author       = {{Kawamura, Akira and Jinno, Kenji and Berndtsson, Ronny and Furukawa, Takashi}},
  issn         = {{0022-1694}},
  keywords     = {{High-intensity rainfall; Real-time prediction}},
  language     = {{eng}},
  month        = {{12}},
  number       = {{1-4}},
  pages        = {{109--118}},
  publisher    = {{Elsevier}},
  series       = {{Journal of Hydrology}},
  title        = {{Real-time tracking of convective rainfall properties using a two-dimensional advection-diffusion model}},
  url          = {{http://dx.doi.org/10.1016/S0022-1694(97)00088-7}},
  doi          = {{10.1016/S0022-1694(97)00088-7}},
  volume       = {{203}},
  year         = {{1997}},
}