Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

MOCCA code for star cluster simulations - IV. A new scenario for intermediate mass black hole formation in globular clusters

Giersz, Mirek ; Leigh, Nathan ; Hypki, Arkadiusz ; Lützgendorf, Nora and Askar, Abbas LU orcid (2015) In Monthly Notices of the Royal Astronomical Society 454(3). p.3150-3165
Abstract
We discuss a new scenario for the formation of intermediate mass black holes (IMBHs) in dense star clusters. In this scenario, IMBHs are formed as a result of dynamical interactions of hard binaries containing a stellar-mass black hole (BH), with other stars and binaries. We discuss the necessary conditions to initiate the process of intermediate mass BH formation and the influence of an IMBH on the host global globular cluster (GC) properties. We discuss two scenarios for IMBH formation. The SLOW and FAST scenarios. They occur later or earlier in the cluster evolution and require smaller or extremely large central densities, respectively. In our simulations, the formation of IMBHs is highly stochastic. In general, higher formation... (More)
We discuss a new scenario for the formation of intermediate mass black holes (IMBHs) in dense star clusters. In this scenario, IMBHs are formed as a result of dynamical interactions of hard binaries containing a stellar-mass black hole (BH), with other stars and binaries. We discuss the necessary conditions to initiate the process of intermediate mass BH formation and the influence of an IMBH on the host global globular cluster (GC) properties. We discuss two scenarios for IMBH formation. The SLOW and FAST scenarios. They occur later or earlier in the cluster evolution and require smaller or extremely large central densities, respectively. In our simulations, the formation of IMBHs is highly stochastic. In general, higher formation probabilities follow from larger cluster concentrations (i.e. central densities). We further discuss possible observational signatures of the presence of IMBHs in GCs that follow from our simulations. These include the spatial and kinematic structure of the host cluster, possible radio, X-ray and gravitational wave emissions due to dynamical collisions or mass transfer and the creation of hypervelocity main-sequence escapers during strong dynamical interactions between binaries and an IMBH. All simulations discussed in this paper were performed with the MOCCA (MOnte Carlo Cluster simulAtor) Monte Carlo code. MOCCA accurately follows most of the important physical processes that occur during the dynamical evolution of star clusters but, as with other dynamical codes, it approximates the dissipative processes connected with stellar collisions and binary mergers. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Monthly Notices of the Royal Astronomical Society
volume
454
issue
3
pages
16 pages
publisher
Oxford University Press
external identifiers
  • scopus:85051092753
ISSN
1365-2966
DOI
10.1093/mnras/stv2162
language
English
LU publication?
no
id
80bb8729-4e44-4e62-a119-62fddcfd11b4
date added to LUP
2018-10-30 18:02:39
date last changed
2022-06-21 14:29:03
@article{80bb8729-4e44-4e62-a119-62fddcfd11b4,
  abstract     = {{We discuss a new scenario for the formation of intermediate mass black holes (IMBHs) in dense star clusters. In this scenario, IMBHs are formed as a result of dynamical interactions of hard binaries containing a stellar-mass black hole (BH), with other stars and binaries. We discuss the necessary conditions to initiate the process of intermediate mass BH formation and the influence of an IMBH on the host global globular cluster (GC) properties. We discuss two scenarios for IMBH formation. The SLOW and FAST scenarios. They occur later or earlier in the cluster evolution and require smaller or extremely large central densities, respectively. In our simulations, the formation of IMBHs is highly stochastic. In general, higher formation probabilities follow from larger cluster concentrations (i.e. central densities). We further discuss possible observational signatures of the presence of IMBHs in GCs that follow from our simulations. These include the spatial and kinematic structure of the host cluster, possible radio, X-ray and gravitational wave emissions due to dynamical collisions or mass transfer and the creation of hypervelocity main-sequence escapers during strong dynamical interactions between binaries and an IMBH. All simulations discussed in this paper were performed with the MOCCA (MOnte Carlo Cluster simulAtor) Monte Carlo code. MOCCA accurately follows most of the important physical processes that occur during the dynamical evolution of star clusters but, as with other dynamical codes, it approximates the dissipative processes connected with stellar collisions and binary mergers.}},
  author       = {{Giersz, Mirek and Leigh, Nathan and Hypki, Arkadiusz and Lützgendorf, Nora and Askar, Abbas}},
  issn         = {{1365-2966}},
  language     = {{eng}},
  month        = {{10}},
  number       = {{3}},
  pages        = {{3150--3165}},
  publisher    = {{Oxford University Press}},
  series       = {{Monthly Notices of the Royal Astronomical Society}},
  title        = {{MOCCA code for star cluster simulations - IV. A new scenario for intermediate mass black hole formation in globular clusters}},
  url          = {{http://dx.doi.org/10.1093/mnras/stv2162}},
  doi          = {{10.1093/mnras/stv2162}},
  volume       = {{454}},
  year         = {{2015}},
}