Advanced

PIXE-electrophoresis shows starving collembolan reallocates protein-bound metals.

Bengtsson, Göran LU ; Pallon, Jan LU ; Nilsson, Christina; Triebskorn, Rita and Köhler, Heinz-R (2015) In Ecotoxicology
Abstract
One of multiple functions of metalloproteins is to provide detoxification to excess metal levels in organisms. Here we address the induction and persistence of a range of low to high molecular weight copper- and zinc binding proteins in the collembolan species Tetrodontophora bielanensis exposed to copper- and zinc-enriched food, followed by a period of recovery from metal exposure, in absence and presence of food. After 10 days of feeding copper and zinc contaminated yeast, specimens were either moved to ample of leaf litter material from their woodland stand of origin or starved (no food offered). The molecular weight distribution of metal binding proteins was determined by native polyacryl gel electrophoresis. One gel was stained with... (More)
One of multiple functions of metalloproteins is to provide detoxification to excess metal levels in organisms. Here we address the induction and persistence of a range of low to high molecular weight copper- and zinc binding proteins in the collembolan species Tetrodontophora bielanensis exposed to copper- and zinc-enriched food, followed by a period of recovery from metal exposure, in absence and presence of food. After 10 days of feeding copper and zinc contaminated yeast, specimens were either moved to ample of leaf litter material from their woodland stand of origin or starved (no food offered). The molecular weight distribution of metal binding proteins was determined by native polyacryl gel electrophoresis. One gel was stained with Comassie brilliant blue and a duplicate gel dried and scanned for the amount of copper and zinc by particle-induced X-ray emission. Specimens exposed to copper and recovered from it with ample of food had copper bound to two groups of rather low molecular weight proteins (40-50 kDa) and two of intermediate size (70-80 kDa). Most zinc in specimens from the woodland stand was bound to two large proteins of about 104 and 106 kDa. The same proteins were holding some zinc in metal-exposed specimens, but most zinc was found in proteins <40 kDa in size. Specimens recovered from metal exposure in presence of ample of food had the same distribution pattern of zinc binding proteins, whereas starved specimens had zinc as well as copper mainly bound to two proteins of 8 and 10 kDa in size. Thus, the induction and distribution of copper- and zinc-binding proteins depend on exposure conditions, and the presence of low molecular weight binding proteins, characteristic of metallothioneins, was mainly limited to starving conditions. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Ecotoxicology
publisher
Springer
external identifiers
  • pmid:26507895
  • scopus:84955182844
  • wos:000370715500011
ISSN
1573-3017
DOI
10.1007/s10646-015-1573-y
language
English
LU publication?
yes
id
5c10286f-1c04-4782-a8a4-c310068419fb (old id 8148199)
date added to LUP
2015-11-17 11:09:17
date last changed
2017-01-01 06:23:10
@article{5c10286f-1c04-4782-a8a4-c310068419fb,
  abstract     = {One of multiple functions of metalloproteins is to provide detoxification to excess metal levels in organisms. Here we address the induction and persistence of a range of low to high molecular weight copper- and zinc binding proteins in the collembolan species Tetrodontophora bielanensis exposed to copper- and zinc-enriched food, followed by a period of recovery from metal exposure, in absence and presence of food. After 10 days of feeding copper and zinc contaminated yeast, specimens were either moved to ample of leaf litter material from their woodland stand of origin or starved (no food offered). The molecular weight distribution of metal binding proteins was determined by native polyacryl gel electrophoresis. One gel was stained with Comassie brilliant blue and a duplicate gel dried and scanned for the amount of copper and zinc by particle-induced X-ray emission. Specimens exposed to copper and recovered from it with ample of food had copper bound to two groups of rather low molecular weight proteins (40-50 kDa) and two of intermediate size (70-80 kDa). Most zinc in specimens from the woodland stand was bound to two large proteins of about 104 and 106 kDa. The same proteins were holding some zinc in metal-exposed specimens, but most zinc was found in proteins &lt;40 kDa in size. Specimens recovered from metal exposure in presence of ample of food had the same distribution pattern of zinc binding proteins, whereas starved specimens had zinc as well as copper mainly bound to two proteins of 8 and 10 kDa in size. Thus, the induction and distribution of copper- and zinc-binding proteins depend on exposure conditions, and the presence of low molecular weight binding proteins, characteristic of metallothioneins, was mainly limited to starving conditions.},
  author       = {Bengtsson, Göran and Pallon, Jan and Nilsson, Christina and Triebskorn, Rita and Köhler, Heinz-R},
  issn         = {1573-3017},
  language     = {eng},
  month        = {10},
  publisher    = {Springer},
  series       = {Ecotoxicology},
  title        = {PIXE-electrophoresis shows starving collembolan reallocates protein-bound metals.},
  url          = {http://dx.doi.org/10.1007/s10646-015-1573-y},
  year         = {2015},
}