Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Short-Pulse Laser Spectroscopy for Combustion Diagnostics - Laser-Induced Fluorescence of Polyatomic Molecules and Developments in Measurement and Evaluation

Metz, Thomas LU (2002)
Abstract
Combustion is the most important source of energy worldwide. A better understanding of it is essential if pollutant emissions are to be reduced and combustion devices be made more efficient. This requires measurement of physical and chemical combustion parameters. Laser-induced fluorescence (LIF) is widely employed as a laser-diagnostic technique for the detection of combustion species but it suffers from 'quenching' processes, which can obstruct the determination of species concentrations. Correcting for quenching effects requires knowledge of fluorescence quantum yields, which can be determined from fluorescence lifetimes as obtained in time-resolved LIF experiments.



In this work, fluorescence lifetimes of species... (More)
Combustion is the most important source of energy worldwide. A better understanding of it is essential if pollutant emissions are to be reduced and combustion devices be made more efficient. This requires measurement of physical and chemical combustion parameters. Laser-induced fluorescence (LIF) is widely employed as a laser-diagnostic technique for the detection of combustion species but it suffers from 'quenching' processes, which can obstruct the determination of species concentrations. Correcting for quenching effects requires knowledge of fluorescence quantum yields, which can be determined from fluorescence lifetimes as obtained in time-resolved LIF experiments.



In this work, fluorescence lifetimes of species relevant for combustion were measured in the gas phase under varying conditions of temperature, pressure and oxygen content. The thesis also concerns the development of laser-spectroscopic measurement and evaluation techniques, namely two-dimensional measurement of fluorescence lifetimes using a streak camera, and proper curve fitting of data from experiments with pulsed lasers subject to intensity fluctuations.



The work on PAH involved the substances fluorene, naphthalene, anthracene and pyrene. These were excited in a gas cell at atmospheric pressure and at temperatures of 400 to 1200 K, using a picosecond laser system providing radiation at 266 nm. Emission spectra were observed that showed broadening and red-shifts as the temperature was increased. The fluorescence lifetimes decreased considerably with an increase in temperature and oxygen concentration. The observations were explained in terms of sequence bands and of the density of vibrational states. Naphthalene and pyrene, were also seeded into the post-flame zone of a premixed methane/air flame for studies at still higher temperatures and at different stages of soot formation.



Formaldehyde was excited in a cell at temperatures up to 770 K and pressures up to 10 bar employing picosecond laser radiation at 355 nm. The resulting fluorescence was detected spectrally and temporally resolved. Temperature and pressure were found to shorten the fluorescence lifetimes. Absorption measurements on formaldehyde at wavelengths of about 355 nm and less were also performed. An increase in temperature resulted in broadening of the vibronic bands towards longer wavelengths and in particular features in the ro-vibronic structure being pronounced. The ro-vibronic spectra appeared also broadened as the pressure was increased.



A technique for the two-dimensional visualisation of fluorescence lifetimes using a streak camera was tested numerically and was demonstrated on static fluorescing objects. The precision and accuracy of the technique were characterised. Lifetime ranges for which the technique is best suited were also determined.



Finally, a curve-fitting algorithm applicable to data from experiments using pulsed lasers subject to pulse-to-pulse intensity fluctuations is presented, one which appears to be particularly useful in connection with non-linear spectroscopy. It is based on a measurement model representing the fluctuating laser intensities by random variables. Application of the maximum-likelihood method resulted in a very versatile fitting scheme, which could be of considerable use in other scientific fields as well. The scheme is simple since it takes advantage of existing least-squares algorithms and it is comparably fast without showing any appreciable loss in precision or accuracy. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Förbränning är den viktigaste energikällan på jorden och en ökad förståelse av förbränningsprocesser är väsentlig för att minska miljöfarliga utsläpp och för att öka effektiviteten av förbränningsanläggningar och motorer. För detta ändamål är det viktigt att bestämma bl. a. koncentrationer av ämnen som bildas under förbränningen. Laserbaserade mätmetoder möjliggör beröringsfria mätningar utan att påverka förbränningsprocessen.



Laserinducerad fluorescens (LIF) är en mycket spridd mätteknik där laserstrålning absorberas av molekylerna i fråga, som sedan sänder ut den upptagna energin som strålning (fluorescens), vars intensitet är ett mått på ämnets koncentration. Mätningen... (More)
Popular Abstract in Swedish

Förbränning är den viktigaste energikällan på jorden och en ökad förståelse av förbränningsprocesser är väsentlig för att minska miljöfarliga utsläpp och för att öka effektiviteten av förbränningsanläggningar och motorer. För detta ändamål är det viktigt att bestämma bl. a. koncentrationer av ämnen som bildas under förbränningen. Laserbaserade mätmetoder möjliggör beröringsfria mätningar utan att påverka förbränningsprocessen.



Laserinducerad fluorescens (LIF) är en mycket spridd mätteknik där laserstrålning absorberas av molekylerna i fråga, som sedan sänder ut den upptagna energin som strålning (fluorescens), vars intensitet är ett mått på ämnets koncentration. Mätningen påverkas emellertid i hög grad av olika fysikaliska processer som hindrar ett stort antal molekyler från att fluorescera. Ett exempel är förlust av den upptagna energin vid stöt med andra molekyler. Dessa fysikaliska processer sammanfattas med begreppet "quenching" (eng. utsläckning) och kan studeras genom att iaktta fluorescensens väldigt snabba förlopp under några miljarddels sekunder, en metod som kallas för tidsupplöst laserinducerad fluorescens.



Denna metod användes för att undersöka i vilken mån quenching påverkas av temperatur, tryck och syrgashalten i förbränningsgaserna. Mätningar genomfördes på polyaromatiska kolväten och formaldehyd. De förstnämnda spelar en viktig roll i sotbildning medan formaldehyd är ett ämne som bildas tillfälligt under förbränning av fossila bränslen vid förhållandevis låga temperaturer. Detta ämne är av stort intresse vid undersökning av självantändning, som dels ger upphov till knack i förbränningsmotorer men även utgör antändningsprocessen i HCCI-motorn, en experimentell motortyp som bygger på homogen kompressionsantändning.



Dessutom utvecklades en teknik med vilken quenching kan mätas i två dimensioner med hjälp av en såkallad streak-kamera, en snabb kamera som kan följa intensitetsförlopp under kortare tid än en miljarddels sekund. Denna metod är av intresse för avbildande mätningar av förbränningsämnens rumsliga fördelning. Ett annat arbete handlar om en förbättrad metod för anpassning av mätdata, vilken framförallt är avsedd för sådana fall då laserljusets intensitet varierar mycket under mätningen. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Smyth, Kermit C., Ph.D., National Institute of Standards and Technology (NIST), USA
organization
publishing date
type
Thesis
publication status
published
subject
keywords
pulsed lasers, Physics, Fysik, Laser technology, Laserteknik, non-linear spectroscopy, maximum likelihood, curve fitting, data adjustment, statistical inference, formaldehyde, PAH, polycyclic aromatic hydrocarbons, lifetime imaging, two-dimensional, streak camera, LIF, laser-induced fluorescence, Fluorescence lifetimes, time-resolved
pages
238 pages
publisher
Department of Physics, Lund University
defense location
Department of Physics, Sölvegatan 14, Lecture hall B, Lund, Sweden
defense date
2003-01-17 10:15:00
external identifiers
  • other:LUTFD2/TFCP--83--SE
language
English
LU publication?
yes
additional info
F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures, part I: Cell measurements,” Appl. Phys. B 72 (4): 465–478 (2001).F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures, part II: Flame measurements,” Appl. Phys. B 72 (4): 479–489 (2001).T. Metz, X. Bai, F. Ossler, M. Aldén, “Fluorescence lifetimes of formaldehyde in the A 1A2 --> X 1A1 band system at elevated temperatures and pressures,” to be submitted.X. Bai, F. Ossler, T. Metz, M. Aldén, “Absorption of formaldehyde in the A 1A2 <-- X 1A1 band system at elevated temperatures and pressures,” to be submitted.F. Ossler, T. Metz, L. Martinsson, and M. Aldén, “Two-dimensional visualiza-tion of fluorescence lifetimes using a picosecond laser and a streak-camera,” Appl. Opt. 37 (12): 2303–2314 (1998).T. Metz, J. Walewski, and C. F. Kaminski, “Maximum-likelihood curve fitting scheme for experiments with pulsed lasers subject to intensity fluctuations,” accepted for publication in Appl. Opt.
id
82549769-fff7-484c-87f5-4bccc41fe538 (old id 465357)
date added to LUP
2016-04-01 15:33:07
date last changed
2018-11-21 20:35:04
@phdthesis{82549769-fff7-484c-87f5-4bccc41fe538,
  abstract     = {{Combustion is the most important source of energy worldwide. A better understanding of it is essential if pollutant emissions are to be reduced and combustion devices be made more efficient. This requires measurement of physical and chemical combustion parameters. Laser-induced fluorescence (LIF) is widely employed as a laser-diagnostic technique for the detection of combustion species but it suffers from 'quenching' processes, which can obstruct the determination of species concentrations. Correcting for quenching effects requires knowledge of fluorescence quantum yields, which can be determined from fluorescence lifetimes as obtained in time-resolved LIF experiments.<br/><br>
<br/><br>
In this work, fluorescence lifetimes of species relevant for combustion were measured in the gas phase under varying conditions of temperature, pressure and oxygen content. The thesis also concerns the development of laser-spectroscopic measurement and evaluation techniques, namely two-dimensional measurement of fluorescence lifetimes using a streak camera, and proper curve fitting of data from experiments with pulsed lasers subject to intensity fluctuations.<br/><br>
<br/><br>
The work on PAH involved the substances fluorene, naphthalene, anthracene and pyrene. These were excited in a gas cell at atmospheric pressure and at temperatures of 400 to 1200 K, using a picosecond laser system providing radiation at 266 nm. Emission spectra were observed that showed broadening and red-shifts as the temperature was increased. The fluorescence lifetimes decreased considerably with an increase in temperature and oxygen concentration. The observations were explained in terms of sequence bands and of the density of vibrational states. Naphthalene and pyrene, were also seeded into the post-flame zone of a premixed methane/air flame for studies at still higher temperatures and at different stages of soot formation.<br/><br>
<br/><br>
Formaldehyde was excited in a cell at temperatures up to 770 K and pressures up to 10 bar employing picosecond laser radiation at 355 nm. The resulting fluorescence was detected spectrally and temporally resolved. Temperature and pressure were found to shorten the fluorescence lifetimes. Absorption measurements on formaldehyde at wavelengths of about 355 nm and less were also performed. An increase in temperature resulted in broadening of the vibronic bands towards longer wavelengths and in particular features in the ro-vibronic structure being pronounced. The ro-vibronic spectra appeared also broadened as the pressure was increased.<br/><br>
<br/><br>
A technique for the two-dimensional visualisation of fluorescence lifetimes using a streak camera was tested numerically and was demonstrated on static fluorescing objects. The precision and accuracy of the technique were characterised. Lifetime ranges for which the technique is best suited were also determined.<br/><br>
<br/><br>
Finally, a curve-fitting algorithm applicable to data from experiments using pulsed lasers subject to pulse-to-pulse intensity fluctuations is presented, one which appears to be particularly useful in connection with non-linear spectroscopy. It is based on a measurement model representing the fluctuating laser intensities by random variables. Application of the maximum-likelihood method resulted in a very versatile fitting scheme, which could be of considerable use in other scientific fields as well. The scheme is simple since it takes advantage of existing least-squares algorithms and it is comparably fast without showing any appreciable loss in precision or accuracy.}},
  author       = {{Metz, Thomas}},
  keywords     = {{pulsed lasers; Physics; Fysik; Laser technology; Laserteknik; non-linear spectroscopy; maximum likelihood; curve fitting; data adjustment; statistical inference; formaldehyde; PAH; polycyclic aromatic hydrocarbons; lifetime imaging; two-dimensional; streak camera; LIF; laser-induced fluorescence; Fluorescence lifetimes; time-resolved}},
  language     = {{eng}},
  publisher    = {{Department of Physics, Lund University}},
  school       = {{Lund University}},
  title        = {{Short-Pulse Laser Spectroscopy for Combustion Diagnostics - Laser-Induced Fluorescence of Polyatomic Molecules and Developments in Measurement and Evaluation}},
  year         = {{2002}},
}