Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Microstructural, Thermal, Crystallization, and Water Absorption Properties of Films Prepared from Never-Dried and Freeze-Dried Cellulose Nanocrystals

Hossain, Kazi M. Zakir ; Calabrese, Vincenzo ; da Silva, Marcelo A. ; Schmitt, Julien LU ; Bryant, Saffron J. ; Islam, Md Towhidul ; Felfel, Reda M. ; Scott, Janet L. and Edler, Karen J. LU orcid (2021) In Macromolecular Materials and Engineering 306(1).
Abstract

In this paper, the microstructural, optical, thermal, crystallization, and water absorption properties of films prepared from never-dried (ND) and freeze-dried (FD) cellulose nanocrystals (CNCs) are reported. Morphology of the ND CNCs reveals a needle-like structure, while after freeze-drying, they show a flake-like morphology. Microstructural analysis of ND and FD CNCs are further studied via small angle X-ray scattering to probe interactions. ND CNCs yield a transparent film with a low surface roughness (14 ± 4 nm), while the FD CNC film evidence a significant reduction of their transparency due to their higher surface roughness (134 ± 20 nm). Although Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy... (More)

In this paper, the microstructural, optical, thermal, crystallization, and water absorption properties of films prepared from never-dried (ND) and freeze-dried (FD) cellulose nanocrystals (CNCs) are reported. Morphology of the ND CNCs reveals a needle-like structure, while after freeze-drying, they show a flake-like morphology. Microstructural analysis of ND and FD CNCs are further studied via small angle X-ray scattering to probe interactions. ND CNCs yield a transparent film with a low surface roughness (14 ± 4 nm), while the FD CNC film evidence a significant reduction of their transparency due to their higher surface roughness (134 ± 20 nm). Although Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy analyses reveal no chemical change occurs during the freeze-drying process, yet a more intense thermal degradation profile is observed for FD CNC film, probably due to the higher oxygen ingress within the gaps created between the stacked flakes. This, in turn, results in a greater loss of crystallinity at a higher temperature (300 °C) compared to the ND CNC film. A rapid decrease in water contact angle of the FD CNC film proves that the morphology of flakes and their orientation within the film has a strong influence in increasing water absorption capacity.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
keywords
cellulose nanocrystals, crystallinity, freeze-drying, thermal degradation, water absorption
in
Macromolecular Materials and Engineering
volume
306
issue
1
article number
2000462
pages
12 pages
publisher
Wiley-Blackwell
external identifiers
  • scopus:85096715110
ISSN
1438-7492
DOI
10.1002/mame.202000462
language
English
LU publication?
no
additional info
Publisher Copyright: © 2020 The Authors. Macromolecular Materials and Engineering published by Wiley-VCH GmbH
id
84ddd868-60e2-4140-a73c-7803cf234eb6
date added to LUP
2022-07-12 15:41:04
date last changed
2022-08-12 12:53:54
@article{84ddd868-60e2-4140-a73c-7803cf234eb6,
  abstract     = {{<p>In this paper, the microstructural, optical, thermal, crystallization, and water absorption properties of films prepared from never-dried (ND) and freeze-dried (FD) cellulose nanocrystals (CNCs) are reported. Morphology of the ND CNCs reveals a needle-like structure, while after freeze-drying, they show a flake-like morphology. Microstructural analysis of ND and FD CNCs are further studied via small angle X-ray scattering to probe interactions. ND CNCs yield a transparent film with a low surface roughness (14 ± 4 nm), while the FD CNC film evidence a significant reduction of their transparency due to their higher surface roughness (134 ± 20 nm). Although Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy analyses reveal no chemical change occurs during the freeze-drying process, yet a more intense thermal degradation profile is observed for FD CNC film, probably due to the higher oxygen ingress within the gaps created between the stacked flakes. This, in turn, results in a greater loss of crystallinity at a higher temperature (300 °C) compared to the ND CNC film. A rapid decrease in water contact angle of the FD CNC film proves that the morphology of flakes and their orientation within the film has a strong influence in increasing water absorption capacity.</p>}},
  author       = {{Hossain, Kazi M. Zakir and Calabrese, Vincenzo and da Silva, Marcelo A. and Schmitt, Julien and Bryant, Saffron J. and Islam, Md Towhidul and Felfel, Reda M. and Scott, Janet L. and Edler, Karen J.}},
  issn         = {{1438-7492}},
  keywords     = {{cellulose nanocrystals; crystallinity; freeze-drying; thermal degradation; water absorption}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Macromolecular Materials and Engineering}},
  title        = {{Microstructural, Thermal, Crystallization, and Water Absorption Properties of Films Prepared from Never-Dried and Freeze-Dried Cellulose Nanocrystals}},
  url          = {{http://dx.doi.org/10.1002/mame.202000462}},
  doi          = {{10.1002/mame.202000462}},
  volume       = {{306}},
  year         = {{2021}},
}