Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Production of Graphene Membranes from Rice Husk Biomass Waste for Improved Desalination

Seitzhanova, Makpal ; Azat, Seitkhan ; Yeleuov, Mukhtar ; Taurbekov, Azamat ; Mansurov, Zulkhair ; Doszhanov, Erlan and Berndtsson, Ronny LU orcid (2024) In Nanomaterials 14(2).
Abstract

Inexpensive and efficient desalination is becoming increasingly important due to dwindling freshwater resources in view of climate change and population increase. Improving desalination techniques of brackish water using graphene-based materials has the possibility to revolutionize freshwater production and treatment. At the same time, graphene matter can be cheaply mass-produced from biowaste materials. In view of this, graphene material was obtained from a four-step production approach starting from rice husk (RH), including pre-carbonation, desilication, chemical activation, and exfoliation. The results showed that the produced samples contained a mixture of graphene layers and amorphous carbon. The activation ratio of 1:5 for... (More)

Inexpensive and efficient desalination is becoming increasingly important due to dwindling freshwater resources in view of climate change and population increase. Improving desalination techniques of brackish water using graphene-based materials has the possibility to revolutionize freshwater production and treatment. At the same time, graphene matter can be cheaply mass-produced from biowaste materials. In view of this, graphene material was obtained from a four-step production approach starting from rice husk (RH), including pre-carbonation, desilication, chemical activation, and exfoliation. The results showed that the produced samples contained a mixture of graphene layers and amorphous carbon. The activation ratio of 1:5 for carbonized RH and potassium hydroxide (KOH), respectively, provided higher graphene content than the 1:4 ratio of the same components, while the number of active layers remained unaffected. Further treatment with H
2O
2 did not affect the graphene content and exfoliation of the amorphous carbon. Preparation of the graphene material by the NIPS technique and vacuum filtration displayed different physicochemical characteristics of the obtained membranes. However, the membranes' main desalination function might be related more to adsorption rather than size exclusion. In any case, the desalination properties of the different graphene material types were tested on 35 g/L saltwater samples containing NaCl, KCl, MgCl
2, CaSO
4, and MgSO
4. The produced graphene materials efficiently reduced the salt content by up to 95%. Especially for the major constituent NaCl, the removal efficiency was high.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Nanomaterials
volume
14
issue
2
pages
13 pages
publisher
MDPI AG
external identifiers
  • scopus:85183202178
  • pmid:38276742
ISSN
2079-4991
DOI
10.3390/nano14020224
language
English
LU publication?
yes
id
86d87d61-e226-4ca2-8684-481dd6c6713b
date added to LUP
2024-02-01 07:59:34
date last changed
2024-04-18 13:45:20
@article{86d87d61-e226-4ca2-8684-481dd6c6713b,
  abstract     = {{<p>Inexpensive and efficient desalination is becoming increasingly important due to dwindling freshwater resources in view of climate change and population increase. Improving desalination techniques of brackish water using graphene-based materials has the possibility to revolutionize freshwater production and treatment. At the same time, graphene matter can be cheaply mass-produced from biowaste materials. In view of this, graphene material was obtained from a four-step production approach starting from rice husk (RH), including pre-carbonation, desilication, chemical activation, and exfoliation. The results showed that the produced samples contained a mixture of graphene layers and amorphous carbon. The activation ratio of 1:5 for carbonized RH and potassium hydroxide (KOH), respectively, provided higher graphene content than the 1:4 ratio of the same components, while the number of active layers remained unaffected. Further treatment with H<br>
 2O<br>
 2 did not affect the graphene content and exfoliation of the amorphous carbon. Preparation of the graphene material by the NIPS technique and vacuum filtration displayed different physicochemical characteristics of the obtained membranes. However, the membranes' main desalination function might be related more to adsorption rather than size exclusion. In any case, the desalination properties of the different graphene material types were tested on 35 g/L saltwater samples containing NaCl, KCl, MgCl<br>
 2, CaSO<br>
 4, and MgSO<br>
 4. The produced graphene materials efficiently reduced the salt content by up to 95%. Especially for the major constituent NaCl, the removal efficiency was high.<br>
 </p>}},
  author       = {{Seitzhanova, Makpal and Azat, Seitkhan and Yeleuov, Mukhtar and Taurbekov, Azamat and Mansurov, Zulkhair and Doszhanov, Erlan and Berndtsson, Ronny}},
  issn         = {{2079-4991}},
  language     = {{eng}},
  month        = {{01}},
  number       = {{2}},
  publisher    = {{MDPI AG}},
  series       = {{Nanomaterials}},
  title        = {{Production of Graphene Membranes from Rice Husk Biomass Waste for Improved Desalination}},
  url          = {{http://dx.doi.org/10.3390/nano14020224}},
  doi          = {{10.3390/nano14020224}},
  volume       = {{14}},
  year         = {{2024}},
}