Proper biharmonic maps and (2,1) -harmonic morphisms from some wild geometries
(2023) In Rendiconti del Circolo Matematico di Palermo- Abstract
In this work we construct a variety of new complex-valued proper biharmonic maps and (2, 1)-harmonic morphisms on Riemannian manifolds with non-trivial geometry. These are solutions to a non-linear system of partial differential equations depending on the geometric data of the manifolds involved.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/87ad280e-37e1-4b20-8501-4d4a28eae757
- author
- Ghandour, Elsa
LU
and Gudmundsson, Sigmundur
LU
- organization
- publishing date
- 2023
- type
- Contribution to journal
- publication status
- epub
- subject
- keywords
- Conformal foliations, Harmonic morphisms, Lie groups, Minimal foliations
- in
- Rendiconti del Circolo Matematico di Palermo
- publisher
- Springer
- external identifiers
-
- scopus:85152460027
- ISSN
- 0009-725X
- DOI
- 10.1007/s12215-023-00882-8
- language
- English
- LU publication?
- yes
- id
- 87ad280e-37e1-4b20-8501-4d4a28eae757
- date added to LUP
- 2023-07-19 10:40:06
- date last changed
- 2023-09-14 11:52:12
@article{87ad280e-37e1-4b20-8501-4d4a28eae757, abstract = {{<p>In this work we construct a variety of new complex-valued proper biharmonic maps and (2, 1)-harmonic morphisms on Riemannian manifolds with non-trivial geometry. These are solutions to a non-linear system of partial differential equations depending on the geometric data of the manifolds involved.</p>}}, author = {{Ghandour, Elsa and Gudmundsson, Sigmundur}}, issn = {{0009-725X}}, keywords = {{Conformal foliations; Harmonic morphisms; Lie groups; Minimal foliations}}, language = {{eng}}, publisher = {{Springer}}, series = {{Rendiconti del Circolo Matematico di Palermo}}, title = {{Proper biharmonic maps and (2,1) -harmonic morphisms from some wild geometries}}, url = {{http://dx.doi.org/10.1007/s12215-023-00882-8}}, doi = {{10.1007/s12215-023-00882-8}}, year = {{2023}}, }