Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Binary particle separation in droplet microfluidics using acoustophoresis

Fornell, Anna LU ; Cushing, Kevin LU ; Nilsson, Johan LU and Tenje, Maria LU (2018) In Applied Physics Letters 112(6).
Abstract

We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet... (More)

We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Applied Physics Letters
volume
112
issue
6
article number
063701
publisher
American Institute of Physics (AIP)
external identifiers
  • scopus:85041855122
ISSN
0003-6951
DOI
10.1063/1.5020356
language
English
LU publication?
yes
id
8bf9e1df-f97a-4af3-a7c8-3ee10a2a3aba
date added to LUP
2018-02-21 08:45:58
date last changed
2022-04-09 22:08:40
@article{8bf9e1df-f97a-4af3-a7c8-3ee10a2a3aba,
  abstract     = {{<p>We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.</p>}},
  author       = {{Fornell, Anna and Cushing, Kevin and Nilsson, Johan and Tenje, Maria}},
  issn         = {{0003-6951}},
  language     = {{eng}},
  month        = {{02}},
  number       = {{6}},
  publisher    = {{American Institute of Physics (AIP)}},
  series       = {{Applied Physics Letters}},
  title        = {{Binary particle separation in droplet microfluidics using acoustophoresis}},
  url          = {{http://dx.doi.org/10.1063/1.5020356}},
  doi          = {{10.1063/1.5020356}},
  volume       = {{112}},
  year         = {{2018}},
}