Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

EC-Earth3-AerChem : A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6

Van Noije, Twan ; Bergman, Tommi ; Le Sager, Philippe ; O'Donnell, Declan ; Makkonen, Risto ; Gonçalves-Ageitos, Mariá ; Döscher, Ralf ; Fladrich, Uwe ; Von Hardenberg, Jost and Keskinen, Jukka Pekka , et al. (2021) In Geoscientific Model Development 14(9). p.5637-5668
Abstract

This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of... (More)

This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average -0.09 W m-2 with a standard deviation due to interannual variability of 0.25 W m-2, showing no significant drift. The global surface air temperature in the simulation is on average 14.08 ∼ C with an interannual standard deviation of 0.17 ∼ C, exhibiting a small drift of 0.015 ± 0.005 ∼ C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 ∼ C, and its transient climate response is estimated at 2.1 ∼ C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995-2014 has an average bias of -0.86 ± 0.05 ∼ C with a standard deviation across ensemble members of 0.35 ∼ C in the Northern Hemisphere and 1.29 ± 0.02 ∼ C with a corresponding standard deviation of 0.05 ∼ C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091-2100) of 4.9 ∼ C above the preindustrial mean. A 0.5 ∼ C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 ∼ C.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Geoscientific Model Development
volume
14
issue
9
pages
32 pages
publisher
Copernicus GmbH
external identifiers
  • scopus:85115060872
ISSN
1991-959X
DOI
10.5194/gmd-14-5637-2021
language
English
LU publication?
yes
additional info
Funding Information: Acknowledgements. The development of EC-Earth3 and EC-Earth3-AerChem has benefitted from services provided by the IS-ENES3 project, which received funding from the European Union’s Horizon 2020 Research and Innovation program (grant agreement no. 824084). Jukka-Pekka Keskinen and Risto Makkonen wish to acknowledge the IT Center for Science, Finland (CSC) for software support and computational resources. María Gonçalves-Ageitos and Carlos Pérez García-Pando acknowledge the Partnership for Advanced Computing in Europe (PRACE) and the Spanish Supercomputing Network (RES) for awarding access to MareNostrum at the Barcelona Supercomputing Center (BSC). Funding Information: Financial support. Twan van Noije, Tommi Bergman, Philippe Le Sager, and Jost von Hardenberg acknowledge funding from the European Union’s Horizon 2020 Research and Innovation program (CRESCENDO, grant agreement no. 641816). María Gonçalves-Ageitos and Carlos Pérez García-Pando acknowledge funding from the European Research Council (FRAGMENT, grant agreement no. 773051); the AXA Research Fund; and the Spanish Ministry of Science, Innovation and Universities (grant agreement nos. RYC-2015-18690 and CGL2017-88911-R). Roland Schrödner acknowledges funding from the strategic research area MERGE (Modelling the Regional and Global Earth system). Publisher Copyright: © 2021 Twan van Noije et al. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
id
8f1d12e7-8e6e-4ce4-8f54-7464c94714c2
date added to LUP
2021-09-28 12:30:26
date last changed
2023-02-21 11:37:59
@article{8f1d12e7-8e6e-4ce4-8f54-7464c94714c2,
  abstract     = {{<p>This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average -0.09 W m-2 with a standard deviation due to interannual variability of 0.25 W m-2, showing no significant drift. The global surface air temperature in the simulation is on average 14.08 ∼ C with an interannual standard deviation of 0.17 ∼ C, exhibiting a small drift of 0.015 ± 0.005 ∼ C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 ∼ C, and its transient climate response is estimated at 2.1 ∼ C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995-2014 has an average bias of -0.86 ± 0.05 ∼ C with a standard deviation across ensemble members of 0.35 ∼ C in the Northern Hemisphere and 1.29 ± 0.02 ∼ C with a corresponding standard deviation of 0.05 ∼ C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091-2100) of 4.9 ∼ C above the preindustrial mean. A 0.5 ∼ C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 ∼ C.</p>}},
  author       = {{Van Noije, Twan and Bergman, Tommi and Le Sager, Philippe and O'Donnell, Declan and Makkonen, Risto and Gonçalves-Ageitos, Mariá and Döscher, Ralf and Fladrich, Uwe and Von Hardenberg, Jost and Keskinen, Jukka Pekka and Korhonen, Hannele and Laakso, Anton and Myriokefalitakis, Stelios and Ollinaho, Pirkka and Pérez Garciá-Pando, Carlos and Reerink, Thomas and Schrödner, Roland and Wyser, Klaus and Yang, Shuting}},
  issn         = {{1991-959X}},
  language     = {{eng}},
  month        = {{09}},
  number       = {{9}},
  pages        = {{5637--5668}},
  publisher    = {{Copernicus GmbH}},
  series       = {{Geoscientific Model Development}},
  title        = {{EC-Earth3-AerChem : A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6}},
  url          = {{http://dx.doi.org/10.5194/gmd-14-5637-2021}},
  doi          = {{10.5194/gmd-14-5637-2021}},
  volume       = {{14}},
  year         = {{2021}},
}