Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Bird populations most exposed to climate change are less sensitive to climatic variation

Bailey, Liam D. ; van de Pol, Martijn ; Adriaensen, Frank ; Arct, Aneta ; Barba, Emilio ; Bellamy, Paul E. ; Bonamour, Suzanne ; Bouvier, Jean Charles ; Burgess, Malcolm D. and Charmantier, Anne , et al. (2022) In Nature Communications 13(1).
Abstract

The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that... (More)

The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species’ range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.

(Less)
Please use this url to cite or link to this publication:
@article{901feecf-bb73-43d8-8b23-0ad59aa8729c,
  abstract     = {{<p>The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species’ range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.</p>}},
  author       = {{Bailey, Liam D. and van de Pol, Martijn and Adriaensen, Frank and Arct, Aneta and Barba, Emilio and Bellamy, Paul E. and Bonamour, Suzanne and Bouvier, Jean Charles and Burgess, Malcolm D. and Charmantier, Anne and Cusimano, Camillo and Doligez, Blandine and Drobniak, Szymon M. and Dubiec, Anna and Eens, Marcel and Eeva, Tapio and Ferns, Peter N. and Goodenough, Anne E. and Hartley, Ian R. and Hinsley, Shelley A. and Ivankina, Elena and Juškaitis, Rimvydas and Kempenaers, Bart and Kerimov, Anvar B. and Lavigne, Claire and Leivits, Agu and Mainwaring, Mark C. and Matthysen, Erik and Nilsson, Jan Åke and Orell, Markku and Rytkönen, Seppo and Senar, Juan Carlos and Sheldon, Ben C. and Sorace, Alberto and Stenning, Martyn J. and Török, János and van Oers, Kees and Vatka, Emma and Vriend, Stefan J.G. and Visser, Marcel E.}},
  issn         = {{2041-1723}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{Nature Publishing Group}},
  series       = {{Nature Communications}},
  title        = {{Bird populations most exposed to climate change are less sensitive to climatic variation}},
  url          = {{http://dx.doi.org/10.1038/s41467-022-29635-4}},
  doi          = {{10.1038/s41467-022-29635-4}},
  volume       = {{13}},
  year         = {{2022}},
}