Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Fine and Ultrafine Particles from Combustion Sources - Investigations with In-situ Techniques

Pagels, Joakim LU (2005)
Abstract
Fine airborne particles are associated with adverse health effects in the human population. The aim of this research was to develop and evaluate methods for in-situ characterisation of fine and ultrafine particles and to determine their deposition in the human airways. The aim was also to increase knowledge about health and environmentally relevant properties of aerosols from biomass combustion and selected indoor sources.



The methods include instrumental techniques such as Scanning Mobility Particle Sizer (SMPS), Electrical Low-Pressure Impactor (ELPI), Aerodynamic Particle Sizer (APS) and Tandem Differential Mobility Analysers (TDMA) based on volatility and hygroscopic growth. Filter samplers and impactors were used... (More)
Fine airborne particles are associated with adverse health effects in the human population. The aim of this research was to develop and evaluate methods for in-situ characterisation of fine and ultrafine particles and to determine their deposition in the human airways. The aim was also to increase knowledge about health and environmentally relevant properties of aerosols from biomass combustion and selected indoor sources.



The methods include instrumental techniques such as Scanning Mobility Particle Sizer (SMPS), Electrical Low-Pressure Impactor (ELPI), Aerodynamic Particle Sizer (APS) and Tandem Differential Mobility Analysers (TDMA) based on volatility and hygroscopic growth. Filter samplers and impactors were used for collecting particles on substrates for subsequent chemical analysis. Emissions from local district heating plants (0.5-12 MW), based on moving grate combustion of woody fuels, were sampled with a dilution system and characterised. Particles from the indoor sources of cigarettes, incense and candles were examined in the laboratory by using an airtight 22 m3 stainless steel chamber. A set-up to determine respiratory deposition in humans was constructed. It was automatised and uses an electrical mobility spectrometer with an improved inversion algorithm to perform fast measurements of particles of different sizes in the inhaled and exhaled air. It was evaluated on human test-persons.



The investigated biomass combustion sources emit high concentrations of fine and ultrafine particles. The chemical composition is dominated by KCl and K2SO4; Zn, Cd and Pb were also quantified. Elemental carbon was identified in particles larger than 150 nm during periods of incomplete combustion. The particle concentration depends on the fuel ash content and the combustion efficiency. The aerosol is essentially internally mixed with hygroscopic growth factors significantly higher than reported for diesel exhaust and environmental tobacco smoke. The particles restructure from agglomerates to a more compact shape upon first exposure to moderately high relative humidity. This results in an increase in effective density and fractal dimension. Hygroscopic growth of these particles reduces the respiratory dose by a factor of 3-4 compared to hydrophobic particles of the same size. The biomass combustion particles mainly consist of soluble ash components and need to be treated differently in future health effect assessments compared to particles from incomplete combustion, e.g. from diesel engines, wood stoves and cigarette smoke.



Sidestream cigarette and incense smoke are well internally mixed aerosols dominated by organic compounds. Each particle consists of components with a relatively wide range in vapour pressure. The volatile fraction decreases at lower particle concentrations in the chamber and upon ageing, which is attributed to different degrees of evaporation from the particle to the gas phase. Four different particle types were identified in emissions from candles.



The feasibility of the ELPI and the APS to assess mass size distributions was investigated. It was found that the measurement quality is dependent on the size distribution of the aerosol.



The set-up for respiratory deposition has low inherent particle losses. Determinations of precision, accuracy and sensitivity show that it can be used for field measurements in typical urban and indoor environments.



Methods for characterisation of aerosols containing fine and ultrafine particles have been developed, evaluated and applied. The results can be used to improve exposure assessments in toxicological and epidemiological studies and for risk assessments.



Papers included in the thesis



I. Pagels J., Strand M., Rissler J., Szpila A., Gudmundsson A., Bohgard M., Lillieblad L., Sanati M. and Swietlicki E. (2003) Characteristics of Aerosol Particles Formed During Grate Combustion of Moist Forest Residue, Journal of Aerosol Science 34, 1043-1059



II. Wierzbicka A., Lillieblad L., Pagels J., Strand M., Gudmundsson A., Gharibi A., Swietlicki E., Sanati M. and Bohgard M. (2005) Particle Emissions from District Heating Units Operating on Three Commonly Used Biofuels, Atmospheric Environment 39, 139-150



III. Rissler J., Pagels J., Swietlicki E., Wierzbicka A., Strand M., Lillieblad L., Sanati M. and Bohgard M. (2005) Hygroscopic Behaviour of Aerosol Particles Emitted from Biomass Fired Grate Boilers, Submitted



IV. Pagels J., Gudmundsson A., Gustavsson E., Asking L. and Bohgard M. (2005) Evaluation of Aerodynamic Particle Sizer and Electrical Low-Pressure Impactor for Unimodal and Bimodal Mass-Weighted Size Distributions, Submitted



V. Pagels J., Löndahl J., Zhou J., Bohgard M. and Swietlicki E. (2005) A set-up for Field Studies of Respiratory Deposition in Humans, Manuscript (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Det finns samband mellan halten av små luftburna partiklar och negativa hälsoeffekter i befolkningen. Målsättningen med avhandlingen var att utveckla och utvärdera metoder för in-situ karakterisering av fina (< 1 um) och ultrafina (<0.1 um) luftburna partiklar samt metodik för bestämning av partikeldeponering i andningsvägarna. Målet var också att öka kunskapen om hälso- och miljörelevanta egenskaper hos partiklar från biomassförbränning och några källor i inomhusmiljön.



Metoderna baseras på mätinstrument som Scanning Mobility Particle Sizer (SMPS), Electrical Low-Pressure Impactor (ELPI), Aerodynamic Particle Sizer (APS) och Tandem Differential Mobility Analyzer (TDMA)... (More)
Popular Abstract in Swedish

Det finns samband mellan halten av små luftburna partiklar och negativa hälsoeffekter i befolkningen. Målsättningen med avhandlingen var att utveckla och utvärdera metoder för in-situ karakterisering av fina (< 1 um) och ultrafina (<0.1 um) luftburna partiklar samt metodik för bestämning av partikeldeponering i andningsvägarna. Målet var också att öka kunskapen om hälso- och miljörelevanta egenskaper hos partiklar från biomassförbränning och några källor i inomhusmiljön.



Metoderna baseras på mätinstrument som Scanning Mobility Particle Sizer (SMPS), Electrical Low-Pressure Impactor (ELPI), Aerodynamic Particle Sizer (APS) och Tandem Differential Mobility Analyzer (TDMA) för bestämning av flyktighet och hygroskopicitet. Filterprovtagare och impaktorer användes för att samla in partiklar för kemisk analys. Partiklar från närvärmeverk (0.5-12 MW), som eldas med träbränslen med rosterteknik spädes ut i utspädningssystem och provtogs . Partiklar från inomhuskällor: tobaksrök, rökelse och ljus (stearin och paraffin) undersöktes i en 22 m3 stålkammare. En utrustning för bestämning av partiklars deponering i andningsvägarna har utvecklats. Utrustningen är automatiserad; en elektrisk mobilitetsspektrometer med vidareutvecklad data inversionsalgoritm används för provtagning av partiklar i olika storlekar i in- och utandningsluften.



Höga koncentrationer av fina och ultrafina partiklar emitteras från biomassförbränning i rosterpannor (med dagen reningsteknik). Den kemiska sammansättningen domineras av KCl och K2SO4 med relativt höga koncentrationer av Zn, Cd and Pb. Sot (grafitliknande kol) identifierades i partiklar större än 150 nm under perioder av ofullständig förbränning. Masskoncentrationen beror på bränslets askhalt och förbränningsprocessens effektivitet. Aerosolen är i princip en intern blandning med väsentligt högre hygroskopisk tillväxt än exempelvis partiklar från förbränningsmotorer och tobaksrök. Formen förändras från agglomererat till kompakta partiklar när de utsätts för måttlig relativ luftfuktighet, vilket medför en ökning i effektiv densitet och fraktal dimension. Sådan kunskap ger information om bildningsmekanismer och är nödvändig vid jämförelse av olika mättekniker. Hygroskopisk tillväxt innebär att den deponerade dosen i andningsvägarna minskar med en faktor 3 jämfört med hydrofoba partiklar av samma storlek. Partiklarna från biomassförbränning består huvudsakligen av lösliga askkomponenter och bör behandlas annorlunda i framtida hälsoriskbedömningar än de emissioner från ofullständig förbränning som förekommer till exempel från förbränningsmotorer, vedkaminer och tobaksrökning.



Tobaksrök och rökelse är i princip internt blandade aerosoler som domineras av organiska ämnen. Varje partikel består av komponenter med en relativt stor spridning i ångtryck. Den flyktiga fraktionen minskar vid låga partikelkoncentrationer och vid åldring, detta förklaras av olika grad av evaporering från partikelfasen till gasfasen. Fyra olika partikeltyper identifierades från stearin- och paraffinljus.



Möjligheten att bestämma storleksfördelningar viktade efter partikelmassa, med ELPI- och APS-instrumenten, undersöktes i en laboratoriestudie. Resultaten visade att kvaliteten hos mätdata är beroende av partikelstorleksfördelningen.



Metoden för bestämning av partiklars deponering i andningsvägarna har visats ha hög precision och känslighet. Noggrannheten har verifierats genom jämförelse med tidigare publicerade data. Metoden kan användas i studier av komplexa aerosoler såsom i inomhusmiljöer och för utspädda förbränningsaerosoler.



Metoder för karakterisering av aerosoler innehållande fina och ultrafina partiklar har utvecklats, utvärderats och tillämpats. Resultaten kan användas för att förbättra exponeringsuppskattningar i toxikologiska och epidemiologiska studier och i riskanalyser. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Hämeri, Kaarle, Div. Atmospheric Sciences, Dept. Physical Sciences, Helsinki University, Finland
organization
publishing date
type
Thesis
publication status
published
subject
keywords
pollution control, Environmental technology, Teknik, Technological sciences, Indoor Air, In-Situ Measurement, Biomass Combustion, Morphology, Hygroscopic Growth, Volatility, TDMA, APS, ELPI, Respiratory Deposition, Fine Particles, Miljöteknik, kontroll av utsläpp, Ultrafine Particles
pages
173 pages
publisher
Division of Ergonomics and Aerosol Technology, Department of Design Sciences Lund University
defense location
Institutionen för designvetenskaper Ingvar Kamprads Designcentrum Stora Hörsalen, Sölvegatan 26, Lunds Tekniska Högskola
defense date
2005-04-08 10:15:00
external identifiers
  • other:ISRN: LUTMDN/TMAT 1012-SE
ISBN
91-628-6457-2
language
English
LU publication?
yes
id
91801706-3145-4f7b-8cb0-50b6e01b12c5 (old id 544536)
date added to LUP
2016-04-01 15:40:04
date last changed
2019-11-08 10:16:35
@phdthesis{91801706-3145-4f7b-8cb0-50b6e01b12c5,
  abstract     = {{Fine airborne particles are associated with adverse health effects in the human population. The aim of this research was to develop and evaluate methods for in-situ characterisation of fine and ultrafine particles and to determine their deposition in the human airways. The aim was also to increase knowledge about health and environmentally relevant properties of aerosols from biomass combustion and selected indoor sources.<br/><br>
<br/><br>
The methods include instrumental techniques such as Scanning Mobility Particle Sizer (SMPS), Electrical Low-Pressure Impactor (ELPI), Aerodynamic Particle Sizer (APS) and Tandem Differential Mobility Analysers (TDMA) based on volatility and hygroscopic growth. Filter samplers and impactors were used for collecting particles on substrates for subsequent chemical analysis. Emissions from local district heating plants (0.5-12 MW), based on moving grate combustion of woody fuels, were sampled with a dilution system and characterised. Particles from the indoor sources of cigarettes, incense and candles were examined in the laboratory by using an airtight 22 m3 stainless steel chamber. A set-up to determine respiratory deposition in humans was constructed. It was automatised and uses an electrical mobility spectrometer with an improved inversion algorithm to perform fast measurements of particles of different sizes in the inhaled and exhaled air. It was evaluated on human test-persons.<br/><br>
<br/><br>
The investigated biomass combustion sources emit high concentrations of fine and ultrafine particles. The chemical composition is dominated by KCl and K2SO4; Zn, Cd and Pb were also quantified. Elemental carbon was identified in particles larger than 150 nm during periods of incomplete combustion. The particle concentration depends on the fuel ash content and the combustion efficiency. The aerosol is essentially internally mixed with hygroscopic growth factors significantly higher than reported for diesel exhaust and environmental tobacco smoke. The particles restructure from agglomerates to a more compact shape upon first exposure to moderately high relative humidity. This results in an increase in effective density and fractal dimension. Hygroscopic growth of these particles reduces the respiratory dose by a factor of 3-4 compared to hydrophobic particles of the same size. The biomass combustion particles mainly consist of soluble ash components and need to be treated differently in future health effect assessments compared to particles from incomplete combustion, e.g. from diesel engines, wood stoves and cigarette smoke.<br/><br>
<br/><br>
Sidestream cigarette and incense smoke are well internally mixed aerosols dominated by organic compounds. Each particle consists of components with a relatively wide range in vapour pressure. The volatile fraction decreases at lower particle concentrations in the chamber and upon ageing, which is attributed to different degrees of evaporation from the particle to the gas phase. Four different particle types were identified in emissions from candles.<br/><br>
<br/><br>
The feasibility of the ELPI and the APS to assess mass size distributions was investigated. It was found that the measurement quality is dependent on the size distribution of the aerosol.<br/><br>
<br/><br>
The set-up for respiratory deposition has low inherent particle losses. Determinations of precision, accuracy and sensitivity show that it can be used for field measurements in typical urban and indoor environments.<br/><br>
<br/><br>
Methods for characterisation of aerosols containing fine and ultrafine particles have been developed, evaluated and applied. The results can be used to improve exposure assessments in toxicological and epidemiological studies and for risk assessments.<br/><br>
<br/><br>
Papers included in the thesis<br/><br>
<br/><br>
I. Pagels J., Strand M., Rissler J., Szpila A., Gudmundsson A., Bohgard M., Lillieblad L., Sanati M. and Swietlicki E. (2003) Characteristics of Aerosol Particles Formed During Grate Combustion of Moist Forest Residue, Journal of Aerosol Science 34, 1043-1059<br/><br>
<br/><br>
II. Wierzbicka A., Lillieblad L., Pagels J., Strand M., Gudmundsson A., Gharibi A., Swietlicki E., Sanati M. and Bohgard M. (2005) Particle Emissions from District Heating Units Operating on Three Commonly Used Biofuels, Atmospheric Environment 39, 139-150<br/><br>
<br/><br>
III. Rissler J., Pagels J., Swietlicki E., Wierzbicka A., Strand M., Lillieblad L., Sanati M. and Bohgard M. (2005) Hygroscopic Behaviour of Aerosol Particles Emitted from Biomass Fired Grate Boilers, Submitted<br/><br>
<br/><br>
IV. Pagels J., Gudmundsson A., Gustavsson E., Asking L. and Bohgard M. (2005) Evaluation of Aerodynamic Particle Sizer and Electrical Low-Pressure Impactor for Unimodal and Bimodal Mass-Weighted Size Distributions, Submitted<br/><br>
<br/><br>
V. Pagels J., Löndahl J., Zhou J., Bohgard M. and Swietlicki E. (2005) A set-up for Field Studies of Respiratory Deposition in Humans, Manuscript}},
  author       = {{Pagels, Joakim}},
  isbn         = {{91-628-6457-2}},
  keywords     = {{pollution control; Environmental technology; Teknik; Technological sciences; Indoor Air; In-Situ Measurement; Biomass Combustion; Morphology; Hygroscopic Growth; Volatility; TDMA; APS; ELPI; Respiratory Deposition; Fine Particles; Miljöteknik; kontroll av utsläpp; Ultrafine Particles}},
  language     = {{eng}},
  publisher    = {{Division of Ergonomics and Aerosol Technology, Department of Design Sciences Lund University}},
  school       = {{Lund University}},
  title        = {{Fine and Ultrafine Particles from Combustion Sources - Investigations with In-situ Techniques}},
  year         = {{2005}},
}