Advanced

Tailoring Organic Cation of 2D Air-Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells

Chen, Yani; Sun, Yong-Hui; Peng, Jiajun; Zhang, Wei LU ; Su, Xiaojun LU ; Zheng, Kaibo LU ; Pullerits, Tõnu LU and Liang, Ziqi (2017) In Advanced Energy Materials 7(18).
Abstract

2D perovskites have recently been shown to exhibit significantly improved environmental stability. Derived from their 3D analogues, 2D perovskites are formed by inserting bulky alkylammonium cations in-between the anionic layers. However, these insulating organic spacer cations also hinder charge transport. Herein, such a 2D perovskite, (iso-BA)2(MA)3Pb4I13, that contains short branched-chain spacer cations (iso-BA+) and shows a remarkable increase of optical absorption and crystallinity in comparison to the conventional linear one, n-BA+, is designed. After applying the hot-casting (HC) technique, all these properties are further improved. The HC... (More)

2D perovskites have recently been shown to exhibit significantly improved environmental stability. Derived from their 3D analogues, 2D perovskites are formed by inserting bulky alkylammonium cations in-between the anionic layers. However, these insulating organic spacer cations also hinder charge transport. Herein, such a 2D perovskite, (iso-BA)2(MA)3Pb4I13, that contains short branched-chain spacer cations (iso-BA+) and shows a remarkable increase of optical absorption and crystallinity in comparison to the conventional linear one, n-BA+, is designed. After applying the hot-casting (HC) technique, all these properties are further improved. The HC (iso-BA)2(MA)3Pb4I13 sample exhibits the best ambient stability by maintaining its initial optical absorption after storage of 840 h in an environmental chamber at 20 °C with a relative humidity of 60% without encapsulation. More importantly, the out-of-plane crystal orientation of (iso-BA)2(MA)3Pb4I13 film is notably enhanced, which increases cross-plane charge mobility. As a result, the highest power conversion efficiencies (PCEs) measured from for current density versus voltage curves afford 8.82% and 10.63% for room-temperature and HC-processed 2D perovskites based planar solar cells, respectively. However, the corresponding steady-state PCEs are remarkably lower, which is presumably due to the significant hysteresis phenomena caused by low charge extraction efficiency at interfaces of C60/2D perovskites.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
2D, Air-stable, Hot-casting, Organic-inorganic halide perovskites, Planar solar cells
in
Advanced Energy Materials
volume
7
issue
18
publisher
Wiley-Blackwell
external identifiers
  • scopus:85019416416
  • wos:000411182500004
ISSN
1614-6832
DOI
10.1002/aenm.201700162
language
English
LU publication?
yes
id
92b4209a-e470-4160-a047-fb1a198dcbbf
date added to LUP
2017-06-13 10:57:20
date last changed
2018-11-11 04:53:06
@article{92b4209a-e470-4160-a047-fb1a198dcbbf,
  abstract     = {<p>2D perovskites have recently been shown to exhibit significantly improved environmental stability. Derived from their 3D analogues, 2D perovskites are formed by inserting bulky alkylammonium cations in-between the anionic layers. However, these insulating organic spacer cations also hinder charge transport. Herein, such a 2D perovskite, (iso-BA)<sub>2</sub>(MA)<sub>3</sub>Pb<sub>4</sub>I<sub>13</sub>, that contains short branched-chain spacer cations (iso-BA<sup>+</sup>) and shows a remarkable increase of optical absorption and crystallinity in comparison to the conventional linear one, n-BA<sup>+</sup>, is designed. After applying the hot-casting (HC) technique, all these properties are further improved. The HC (iso-BA)<sub>2</sub>(MA)<sub>3</sub>Pb<sub>4</sub>I<sub>13</sub> sample exhibits the best ambient stability by maintaining its initial optical absorption after storage of 840 h in an environmental chamber at 20 °C with a relative humidity of 60% without encapsulation. More importantly, the out-of-plane crystal orientation of (iso-BA)<sub>2</sub>(MA)<sub>3</sub>Pb<sub>4</sub>I<sub>13</sub> film is notably enhanced, which increases cross-plane charge mobility. As a result, the highest power conversion efficiencies (PCEs) measured from for current density versus voltage curves afford 8.82% and 10.63% for room-temperature and HC-processed 2D perovskites based planar solar cells, respectively. However, the corresponding steady-state PCEs are remarkably lower, which is presumably due to the significant hysteresis phenomena caused by low charge extraction efficiency at interfaces of C<sub>60</sub>/2D perovskites.</p>},
  articleno    = {1700162},
  author       = {Chen, Yani and Sun, Yong-Hui and Peng, Jiajun and Zhang, Wei and Su, Xiaojun and Zheng, Kaibo and Pullerits, Tõnu and Liang, Ziqi},
  issn         = {1614-6832},
  keyword      = {2D,Air-stable,Hot-casting,Organic-inorganic halide perovskites,Planar solar cells},
  language     = {eng},
  number       = {18},
  publisher    = {Wiley-Blackwell},
  series       = {Advanced Energy Materials},
  title        = {Tailoring Organic Cation of 2D Air-Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells},
  url          = {http://dx.doi.org/10.1002/aenm.201700162},
  volume       = {7},
  year         = {2017},
}