On geodesic exponential maps of the Virasoro group
(2007) In Annals of Global Analysis and Geometry 31(2). p.155-180- Abstract
- We study the geodesic exponential maps corresponding to Sobolev type right-invariant (weak) Riemannian metrics mu((k)) (k >= 0) on the Virasoro group Vir and show that for k >= 2, but not for k = 0, 1, each of them defines a smooth Frechet chart of the unital element e is an element of Vir. In particular, the geodesic exponential map corresponding to the Korteweg - de Vries (KdV) equation ( k = 0) is not a local diffeomorphism near the origin.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/674857
- author
- Constantin, Adrian LU ; Kappeler, T. ; Kolev, B. and Topalov, P.
- organization
- publishing date
- 2007
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- geodesic exponential maps, Virasoro group
- in
- Annals of Global Analysis and Geometry
- volume
- 31
- issue
- 2
- pages
- 155 - 180
- publisher
- Springer
- external identifiers
-
- wos:000244190800003
- scopus:33847253064
- ISSN
- 1572-9060
- DOI
- 10.1007/s10455-006-9042-8
- language
- English
- LU publication?
- yes
- id
- 946e56f5-62f8-49fd-8a93-bba3482b8c66 (old id 674857)
- date added to LUP
- 2016-04-01 16:45:40
- date last changed
- 2025-10-14 09:39:51
@article{946e56f5-62f8-49fd-8a93-bba3482b8c66,
abstract = {{We study the geodesic exponential maps corresponding to Sobolev type right-invariant (weak) Riemannian metrics mu((k)) (k >= 0) on the Virasoro group Vir and show that for k >= 2, but not for k = 0, 1, each of them defines a smooth Frechet chart of the unital element e is an element of Vir. In particular, the geodesic exponential map corresponding to the Korteweg - de Vries (KdV) equation ( k = 0) is not a local diffeomorphism near the origin.}},
author = {{Constantin, Adrian and Kappeler, T. and Kolev, B. and Topalov, P.}},
issn = {{1572-9060}},
keywords = {{geodesic exponential maps; Virasoro group}},
language = {{eng}},
number = {{2}},
pages = {{155--180}},
publisher = {{Springer}},
series = {{Annals of Global Analysis and Geometry}},
title = {{On geodesic exponential maps of the Virasoro group}},
url = {{http://dx.doi.org/10.1007/s10455-006-9042-8}},
doi = {{10.1007/s10455-006-9042-8}},
volume = {{31}},
year = {{2007}},
}