Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

m2ABQ—a proposed refinement of the modified algorithm-based qualitative classification of osteoporotic vertebral fractures

Aaltonen, H. L. LU ; O’Reilly, M. K. ; Linnau, K. F. ; Dong, Q. ; Johnston, S. K. ; Jarvik, J. G. and Cross, N. M. (2023) In Osteoporosis International 34(1). p.137-145
Abstract

Summary: Currently, there is no reproducible, widely accepted gold standard to classify osteoporotic vertebral body fractures (OVFs). The purpose of this study is to refine a method with clear rules to classify OVFs for machine learning purposes. The method was found to have moderate interobserver agreement that improved with training. Introduction: The current methods to classify osteoporotic vertebral body fractures are considered ambiguous; there is no reproducible, accepted gold standard. The purpose of this study is to refine classification methodology by introducing clear, unambiguous rules and a refined flowchart to allow consistent classification of osteoporotic vertebral body fractures. Methods: We developed a set of rules and... (More)

Summary: Currently, there is no reproducible, widely accepted gold standard to classify osteoporotic vertebral body fractures (OVFs). The purpose of this study is to refine a method with clear rules to classify OVFs for machine learning purposes. The method was found to have moderate interobserver agreement that improved with training. Introduction: The current methods to classify osteoporotic vertebral body fractures are considered ambiguous; there is no reproducible, accepted gold standard. The purpose of this study is to refine classification methodology by introducing clear, unambiguous rules and a refined flowchart to allow consistent classification of osteoporotic vertebral body fractures. Methods: We developed a set of rules and refinements that we called m2ABQ to classify vertebrae into five categories. A fracture-enriched database of thoracic and lumbar spine radiographs of patients 65 years of age and older was retrospectively obtained from clinical institutional radiology records using natural language processing. Five raters independently classified each vertebral body using the m2ABQ system. After each annotation round, consensus sessions that included all raters were held to discuss and finalize a consensus annotation for each vertebral body where individual raters’ evaluations differed. This process led to further refinement and development of the rules. Results: Each annotation round showed increase in Fleiss kappa both for presence vs absence of fracture 0.62 (0.56–0.68) to 0.70 (0.65–0.75), as well as for the whole m2ABQ scale 0.29 (0.25–0.33) to 0.54 (0.51–0.58). Conclusion: The m2ABQ system demonstrates moderate interobserver agreement and practical feasibility for classifying osteoporotic vertebral body fractures. Future studies to compare the method to existing studies are warranted, as well as further development of its use in machine learning purposes.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Fracture classification, Osteoporosis, Vertebral body fracture
in
Osteoporosis International
volume
34
issue
1
pages
137 - 145
publisher
Springer
external identifiers
  • pmid:36336755
  • scopus:85141397592
ISSN
0937-941X
DOI
10.1007/s00198-022-06546-0
language
English
LU publication?
yes
id
947d0b4e-d213-4b03-8526-02f9e9361920
date added to LUP
2022-12-21 08:41:31
date last changed
2024-06-14 00:01:10
@article{947d0b4e-d213-4b03-8526-02f9e9361920,
  abstract     = {{<p>Summary: Currently, there is no reproducible, widely accepted gold standard to classify osteoporotic vertebral body fractures (OVFs). The purpose of this study is to refine a method with clear rules to classify OVFs for machine learning purposes. The method was found to have moderate interobserver agreement that improved with training. Introduction: The current methods to classify osteoporotic vertebral body fractures are considered ambiguous; there is no reproducible, accepted gold standard. The purpose of this study is to refine classification methodology by introducing clear, unambiguous rules and a refined flowchart to allow consistent classification of osteoporotic vertebral body fractures. Methods: We developed a set of rules and refinements that we called m2ABQ to classify vertebrae into five categories. A fracture-enriched database of thoracic and lumbar spine radiographs of patients 65 years of age and older was retrospectively obtained from clinical institutional radiology records using natural language processing. Five raters independently classified each vertebral body using the m2ABQ system. After each annotation round, consensus sessions that included all raters were held to discuss and finalize a consensus annotation for each vertebral body where individual raters’ evaluations differed. This process led to further refinement and development of the rules. Results: Each annotation round showed increase in Fleiss kappa both for presence vs absence of fracture 0.62 (0.56–0.68) to 0.70 (0.65–0.75), as well as for the whole m2ABQ scale 0.29 (0.25–0.33) to 0.54 (0.51–0.58). Conclusion: The m2ABQ system demonstrates moderate interobserver agreement and practical feasibility for classifying osteoporotic vertebral body fractures. Future studies to compare the method to existing studies are warranted, as well as further development of its use in machine learning purposes.</p>}},
  author       = {{Aaltonen, H. L. and O’Reilly, M. K. and Linnau, K. F. and Dong, Q. and Johnston, S. K. and Jarvik, J. G. and Cross, N. M.}},
  issn         = {{0937-941X}},
  keywords     = {{Fracture classification; Osteoporosis; Vertebral body fracture}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{137--145}},
  publisher    = {{Springer}},
  series       = {{Osteoporosis International}},
  title        = {{m2ABQ—a proposed refinement of the modified algorithm-based qualitative classification of osteoporotic vertebral fractures}},
  url          = {{http://dx.doi.org/10.1007/s00198-022-06546-0}},
  doi          = {{10.1007/s00198-022-06546-0}},
  volume       = {{34}},
  year         = {{2023}},
}