Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors : A feasibility study

Clausen, Malene M. ; Hansen, Anders E. ; af Rosenschold, Per M. LU orcid ; Kjær, Andreas ; Kristensen, Annemarie T. ; McEvoy, Fintan J. and Engelholm, Svend A. (2013) In Radiation Oncology 8(1).
Abstract

Introduction: Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N4)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of 64Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV).Materials and methods: Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were... (More)

Introduction: Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N4)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of 64Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV).Materials and methods: Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, 64Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h 64Cu-ATSM (Cu3 and Cu24) were defined by a threshold based method. FDG sub-volumes were delineated at 40% (FDG40) and 50% (FDG50) of SUVmax. The size of sub-volumes, intersection and biological target volume (BTV) were measured in a treatment planning software. By varying the average dose prescription to the tumor from 66 to 85 Gy, the possible dose boost (DB) was calculated for the three scenarios that the optimal target for the boost was one, the union or the intersection of the FDG and 64Cu-ATSM sub-volumes.Results: The potential boost volumes represented a fairly large fraction of the total GTV: Cu3 49.8% (26.8-72.5%), Cu24 28.1% (2.4-54.3%), FDG40 45.2% (10.1-75.2%), and FDG50 32.5% (2.6-68.1%). A BTV including the union (∪) of Cu3 and FDG would involve boosting to a larger fraction of the GTV, in the case of Cu3∪FDG40 63.5% (51.8-83.8) and Cu3∪FDG50 48.1% (43.7-80.8). The union allowed only a very limited DB whereas the intersection allowed a substantial dose escalation.Conclusions: FDG and 64Cu-ATSM sub-volumes were only partly overlapping, suggesting that the tracers offer complementing information on tumor physiology. Targeting the combined PET positive volume (BTV) for dose escalation within the GTV results in a limited DB. This suggests a more refined dose redistribution based on a weighted combination of the PET tracers in order to obtain an improved tumor control.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Radiation Oncology
volume
8
issue
1
article number
262
publisher
BioMed Central (BMC)
external identifiers
  • pmid:24199939
  • scopus:84887339426
ISSN
1748-717X
DOI
10.1186/1748-717X-8-262
language
English
LU publication?
no
id
94c271d9-3f8e-404f-a77e-6738f1fa937c
date added to LUP
2023-07-19 17:11:38
date last changed
2024-01-05 03:34:13
@article{94c271d9-3f8e-404f-a77e-6738f1fa937c,
  abstract     = {{<p>Introduction: Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[<sup>18</sup> F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N<sup>4</sup>)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of <sup>64</sup>Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV).Materials and methods: Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, <sup>64</sup>Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h <sup>64</sup>Cu-ATSM (Cu3 and Cu24) were defined by a threshold based method. FDG sub-volumes were delineated at 40% (FDG40) and 50% (FDG50) of SUV<sub>max</sub>. The size of sub-volumes, intersection and biological target volume (BTV) were measured in a treatment planning software. By varying the average dose prescription to the tumor from 66 to 85 Gy, the possible dose boost (D<sub>B</sub>) was calculated for the three scenarios that the optimal target for the boost was one, the union or the intersection of the FDG and <sup>64</sup>Cu-ATSM sub-volumes.Results: The potential boost volumes represented a fairly large fraction of the total GTV: Cu3 49.8% (26.8-72.5%), Cu24 28.1% (2.4-54.3%), FDG40 45.2% (10.1-75.2%), and FDG50 32.5% (2.6-68.1%). A BTV including the union (∪) of Cu3 and FDG would involve boosting to a larger fraction of the GTV, in the case of Cu3∪FDG40 63.5% (51.8-83.8) and Cu3∪FDG50 48.1% (43.7-80.8). The union allowed only a very limited D<sub>B</sub> whereas the intersection allowed a substantial dose escalation.Conclusions: FDG and <sup>64</sup>Cu-ATSM sub-volumes were only partly overlapping, suggesting that the tracers offer complementing information on tumor physiology. Targeting the combined PET positive volume (BTV) for dose escalation within the GTV results in a limited D<sub>B</sub>. This suggests a more refined dose redistribution based on a weighted combination of the PET tracers in order to obtain an improved tumor control.</p>}},
  author       = {{Clausen, Malene M. and Hansen, Anders E. and af Rosenschold, Per M. and Kjær, Andreas and Kristensen, Annemarie T. and McEvoy, Fintan J. and Engelholm, Svend A.}},
  issn         = {{1748-717X}},
  language     = {{eng}},
  month        = {{11}},
  number       = {{1}},
  publisher    = {{BioMed Central (BMC)}},
  series       = {{Radiation Oncology}},
  title        = {{Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors : A feasibility study}},
  url          = {{http://dx.doi.org/10.1186/1748-717X-8-262}},
  doi          = {{10.1186/1748-717X-8-262}},
  volume       = {{8}},
  year         = {{2013}},
}