Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Polycyclic Aromatic Hydrocarbons (PAHs) Quantified in Large-Scale Fire Experiments

Blomqvist, Per LU ; McNamee, Margaret Simonson LU ; Andersson, Petra LU and Lönnermark, Anders LU (2012) In Fire Technology 48(2). p.513-528
Abstract

A number of large-scale fire experiments with detailed quantitative analysis of polycyclic aromatic hydrocarbon (PAH) including PAH congener distribution have been conducted by SP. This data is reviewed here and is further assessed with regard to toxicity applying a Toxic Equivalency Factor (TEF) model for estimation of cancer potential. The PAH yield data from the large-scale fire experiments is also compared to emission factors from other combustion sources. The study shows that full-scale fire experiments with different products exhibit a large variation in total PAH yields. Fires with products containing flame retardants were shown to produce the highest yields and generally a more toxic mixture of PAHs than fires with non-flame... (More)

A number of large-scale fire experiments with detailed quantitative analysis of polycyclic aromatic hydrocarbon (PAH) including PAH congener distribution have been conducted by SP. This data is reviewed here and is further assessed with regard to toxicity applying a Toxic Equivalency Factor (TEF) model for estimation of cancer potential. The PAH yield data from the large-scale fire experiments is also compared to emission factors from other combustion sources. The study shows that full-scale fire experiments with different products exhibit a large variation in total PAH yields. Fires with products containing flame retardants were shown to produce the highest yields and generally a more toxic mixture of PAHs than fires with non-flame retarded products. The distribution of individual PAH congeners is generally quantitatively dominated by low molecular weight PAHs, whereas a small number of medium to high molecular weight PAHs are most important in determining the toxicity of the PAH mixture. The large-scale fire experiments indicate that fires normally produce orders of magnitudes higher yields compared to, e. g. modern residential combustion devices. The relative distribution of individual PAHs, which determines the toxicity of the PAH mix, is similar for the fires and open burning data studied, in that benzo(a)pyrene and dibenz(a,h)anthracene dominate the toxicity of the mix as a whole.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Congeners, Fire, PAH, TEF, Toxicity
in
Fire Technology
volume
48
issue
2
pages
16 pages
publisher
Springer
external identifiers
  • scopus:84855895679
ISSN
0015-2684
DOI
10.1007/s10694-011-0242-9
language
English
LU publication?
no
additional info
Copyright: Copyright 2012 Elsevier B.V., All rights reserved.
id
94ff92c5-2123-4e77-a5e4-9e37259728a4
date added to LUP
2021-09-29 14:20:44
date last changed
2022-04-19 08:49:42
@article{94ff92c5-2123-4e77-a5e4-9e37259728a4,
  abstract     = {{<p>A number of large-scale fire experiments with detailed quantitative analysis of polycyclic aromatic hydrocarbon (PAH) including PAH congener distribution have been conducted by SP. This data is reviewed here and is further assessed with regard to toxicity applying a Toxic Equivalency Factor (TEF) model for estimation of cancer potential. The PAH yield data from the large-scale fire experiments is also compared to emission factors from other combustion sources. The study shows that full-scale fire experiments with different products exhibit a large variation in total PAH yields. Fires with products containing flame retardants were shown to produce the highest yields and generally a more toxic mixture of PAHs than fires with non-flame retarded products. The distribution of individual PAH congeners is generally quantitatively dominated by low molecular weight PAHs, whereas a small number of medium to high molecular weight PAHs are most important in determining the toxicity of the PAH mixture. The large-scale fire experiments indicate that fires normally produce orders of magnitudes higher yields compared to, e. g. modern residential combustion devices. The relative distribution of individual PAHs, which determines the toxicity of the PAH mix, is similar for the fires and open burning data studied, in that benzo(a)pyrene and dibenz(a,h)anthracene dominate the toxicity of the mix as a whole.</p>}},
  author       = {{Blomqvist, Per and McNamee, Margaret Simonson and Andersson, Petra and Lönnermark, Anders}},
  issn         = {{0015-2684}},
  keywords     = {{Congeners; Fire; PAH; TEF; Toxicity}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{513--528}},
  publisher    = {{Springer}},
  series       = {{Fire Technology}},
  title        = {{Polycyclic Aromatic Hydrocarbons (PAHs) Quantified in Large-Scale Fire Experiments}},
  url          = {{http://dx.doi.org/10.1007/s10694-011-0242-9}},
  doi          = {{10.1007/s10694-011-0242-9}},
  volume       = {{48}},
  year         = {{2012}},
}