Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The modern era of light kaonic atom experiments

Curceanu, Catalina ; Guaraldo, Carlo ; Iliescu, Mihail ; Cargnelli, Michael ; Hayano, Ryugo ; Marton, Johann ; Zmeskal, Johann ; Ishiwatari, Tomoichi ; Iwasaki, Masa and Okada, Shinji , et al. (2019) In Reviews of Modern Physics 91(2).
Abstract

This review covers the modern era of experimental kaonic atom studies, encompassing 20 years of activity, defined by breakthroughs in technological developments which allowed performing a series of long-awaited precision measurements. Kaonic atoms are atomic systems where an electron is replaced by a negatively charged kaon, containing the strange quark, which interacts in the lowest orbits with the nucleus also by the strong interaction. As a result, their study offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energy. This allows one to study the strong interaction between the antikaon and the nucleon or the nucleus "at threshold," namely, at zero relative energy, without the need of... (More)

This review covers the modern era of experimental kaonic atom studies, encompassing 20 years of activity, defined by breakthroughs in technological developments which allowed performing a series of long-awaited precision measurements. Kaonic atoms are atomic systems where an electron is replaced by a negatively charged kaon, containing the strange quark, which interacts in the lowest orbits with the nucleus also by the strong interaction. As a result, their study offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energy. This allows one to study the strong interaction between the antikaon and the nucleon or the nucleus "at threshold," namely, at zero relative energy, without the need of ad hoc extrapolation to zero energy, as in scattering experiments. The fast progress achieved in performing precision light kaonic atom experiments, which also solved long-pending inconsistencies with theoretical calculations generated by old measurements, relies on the development of novel cryogenic targets, x-ray detectors, and the availability of pure and intense charged kaon beams, which propelled an unprecedented progress in the field. Future experiments, based on new undergoing technological developments, will further boost the kaonic atom studies, thus fostering a deeper understanding of the low-energy strong interaction extended to the second family of quarks.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Reviews of Modern Physics
volume
91
issue
2
article number
025006
publisher
American Physical Society
external identifiers
  • scopus:85070671126
ISSN
0034-6861
DOI
10.1103/RevModPhys.91.025006
language
English
LU publication?
yes
id
962a95e0-94d3-4979-a075-6710be4d7dee
date added to LUP
2022-04-01 11:31:01
date last changed
2023-12-05 11:08:12
@article{962a95e0-94d3-4979-a075-6710be4d7dee,
  abstract     = {{<p>This review covers the modern era of experimental kaonic atom studies, encompassing 20 years of activity, defined by breakthroughs in technological developments which allowed performing a series of long-awaited precision measurements. Kaonic atoms are atomic systems where an electron is replaced by a negatively charged kaon, containing the strange quark, which interacts in the lowest orbits with the nucleus also by the strong interaction. As a result, their study offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energy. This allows one to study the strong interaction between the antikaon and the nucleon or the nucleus "at threshold," namely, at zero relative energy, without the need of ad hoc extrapolation to zero energy, as in scattering experiments. The fast progress achieved in performing precision light kaonic atom experiments, which also solved long-pending inconsistencies with theoretical calculations generated by old measurements, relies on the development of novel cryogenic targets, x-ray detectors, and the availability of pure and intense charged kaon beams, which propelled an unprecedented progress in the field. Future experiments, based on new undergoing technological developments, will further boost the kaonic atom studies, thus fostering a deeper understanding of the low-energy strong interaction extended to the second family of quarks.</p>}},
  author       = {{Curceanu, Catalina and Guaraldo, Carlo and Iliescu, Mihail and Cargnelli, Michael and Hayano, Ryugo and Marton, Johann and Zmeskal, Johann and Ishiwatari, Tomoichi and Iwasaki, Masa and Okada, Shinji and Sirghi, Diana Laura and Tatsuno, Hideyuki}},
  issn         = {{0034-6861}},
  language     = {{eng}},
  number       = {{2}},
  publisher    = {{American Physical Society}},
  series       = {{Reviews of Modern Physics}},
  title        = {{The modern era of light kaonic atom experiments}},
  url          = {{http://dx.doi.org/10.1103/RevModPhys.91.025006}},
  doi          = {{10.1103/RevModPhys.91.025006}},
  volume       = {{91}},
  year         = {{2019}},
}