Advanced

Performance of fountain codes in collaborative relay networks

Molisch, Andreas LU ; Mehta, Neelesh B.; Yedidia, Jonathan S. and Zhang, Jin (2007) In IEEE Transactions on Wireless Communications 6(11). p.4108-4119
Abstract
Cooperative communications, where parallel relays forward information to a destination node, can greatly improve the energy efficiency and latency in ad-hoc networks. However, current networks do not fully exploit its potential as they only use traditional energy-accumulation, which is often used in conjunction with repetition coding or cooperative space-time codes. In this paper, we show that the concept of mutual-information -accumulation can be realized with the help of fountain codes, and leads to a lower energy expenditure and a lower transmission time than energy accumulation. We then provide an analysis of the performance of mutual information accumulation in relay networks with N relay nodes. We first analyze the quasi-synchronuous... (More)
Cooperative communications, where parallel relays forward information to a destination node, can greatly improve the energy efficiency and latency in ad-hoc networks. However, current networks do not fully exploit its potential as they only use traditional energy-accumulation, which is often used in conjunction with repetition coding or cooperative space-time codes. In this paper, we show that the concept of mutual-information -accumulation can be realized with the help of fountain codes, and leads to a lower energy expenditure and a lower transmission time than energy accumulation. We then provide an analysis of the performance of mutual information accumulation in relay networks with N relay nodes. We first analyze the quasi-synchronuous scenario where the source stops transmitting and the relay nodes start transmitting after L relay nodes have successfully decoded the source data. We show that an optimum L exists, and is typically on the order of 3 or 4. We also give closed-form equations for the energy savings that can be achieved by the use of mutual-information-accumulation at the receiver. We then analyze and provide bounds for an alternate scenario where each relay node starts its transmission to the destination as soon as it has decoded the source data, independent of the state of the other relay nodes. This approach further reduces the transmission time, because the transmission by the relay nodes helps the other relay nodes that are still receiving. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
networks, radio, fountain code, cooperative communications, energy accumulation, relay, transmit energy minimization
in
IEEE Transactions on Wireless Communications
volume
6
issue
11
pages
4108 - 4119
publisher
IEEE--Institute of Electrical and Electronics Engineers Inc.
external identifiers
  • wos:000250765800030
  • scopus:36249012581
ISSN
1536-1276
DOI
10.1109/TWC.2007.060232
language
English
LU publication?
yes
id
809f9edf-a02f-429b-b708-190518b7ae86 (old id 974355)
date added to LUP
2008-01-30 06:59:06
date last changed
2017-09-03 04:28:42
@article{809f9edf-a02f-429b-b708-190518b7ae86,
  abstract     = {Cooperative communications, where parallel relays forward information to a destination node, can greatly improve the energy efficiency and latency in ad-hoc networks. However, current networks do not fully exploit its potential as they only use traditional energy-accumulation, which is often used in conjunction with repetition coding or cooperative space-time codes. In this paper, we show that the concept of mutual-information -accumulation can be realized with the help of fountain codes, and leads to a lower energy expenditure and a lower transmission time than energy accumulation. We then provide an analysis of the performance of mutual information accumulation in relay networks with N relay nodes. We first analyze the quasi-synchronuous scenario where the source stops transmitting and the relay nodes start transmitting after L relay nodes have successfully decoded the source data. We show that an optimum L exists, and is typically on the order of 3 or 4. We also give closed-form equations for the energy savings that can be achieved by the use of mutual-information-accumulation at the receiver. We then analyze and provide bounds for an alternate scenario where each relay node starts its transmission to the destination as soon as it has decoded the source data, independent of the state of the other relay nodes. This approach further reduces the transmission time, because the transmission by the relay nodes helps the other relay nodes that are still receiving.},
  author       = {Molisch, Andreas and Mehta, Neelesh B. and Yedidia, Jonathan S. and Zhang, Jin},
  issn         = {1536-1276},
  keyword      = {networks,radio,fountain code,cooperative communications,energy accumulation,relay,transmit energy minimization},
  language     = {eng},
  number       = {11},
  pages        = {4108--4119},
  publisher    = {IEEE--Institute of Electrical and Electronics Engineers Inc.},
  series       = {IEEE Transactions on Wireless Communications},
  title        = {Performance of fountain codes in collaborative relay networks},
  url          = {http://dx.doi.org/10.1109/TWC.2007.060232},
  volume       = {6},
  year         = {2007},
}