Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Comparison of observed and modeled hygroscopic behavior of atmospheric particles

Berg, Olle H. ; Swietlicki, Erik LU orcid ; Frank, Göran LU orcid ; Martinsson, Bengt G. LU ; Cederfelt, Sven Inge ; Laj, Paolo ; Ricci, Loretta ; Berner, Axel ; Dusek, Ulrike and Galambos, Zsusanna , et al. (1998) In Contributions to Atmospheric Physics 71(1). p.47-64
Abstract

The hygroscopic behavior of sub-micrometer atmospheric aerosol particles was studied with a Tandem Differential Mobility Analyzer (TDMA) at a field site in the Po Valley, Italy. The measurements were done in a continental polluted aerosol during the CHEMDROP fog and haze field experiment at San Pietro di Capofiume in November 1994. In this study, hygroscopic diameter growth factors of individual particles were measured when taken from a dry state, to a relative humidity of 90 %. The aerosol consisted of two groups of particles with different hygroscopic properties, as also seen in an earlier field experiment at the same location in 1989 and at other continental sites. The present work is a closure study on the hygroscopic behavior of... (More)

The hygroscopic behavior of sub-micrometer atmospheric aerosol particles was studied with a Tandem Differential Mobility Analyzer (TDMA) at a field site in the Po Valley, Italy. The measurements were done in a continental polluted aerosol during the CHEMDROP fog and haze field experiment at San Pietro di Capofiume in November 1994. In this study, hygroscopic diameter growth factors of individual particles were measured when taken from a dry state, to a relative humidity of 90 %. The aerosol consisted of two groups of particles with different hygroscopic properties, as also seen in an earlier field experiment at the same location in 1989 and at other continental sites. The present work is a closure study on the hygroscopic behavior of sub-micrometer aerosol particles and their mass. Ammonium sulfate was used to model the hygroscopic growth with a model based on thermodynamic data for non-ideal aqueous solutions at water vapor subsaturation. The study was made in two steps: The first step is a comparison between hygroscopic active aerosol volume fractions derived from TDMA measurements on individual particles integrated over the particle size distributions, and collected volume fractions of major ions sampled by size resolved cascade impactors. The model of hygroscopic growth was also used, in the second step, to calculate ambient sizes of individual aerosol particles. These sizes were then compared to the actual ambient sizes as measured by the Droplet Aerosol Analyzer. The result shows agreement, within the estimated errors, between the integrated hygroscopic active volume fractions and the collected volume fractions of inorganic salts, for five events out of six studied. A mass balance could also be obtained between the masses collected with the impactors and the integrated volume distributions, by attributing reasonable densities to the hygroscopically active and inactive fractions. The differences between the calculated and measured ambient sizes were within measurement errors, when Raoult's law was used to model the occasions with relative humidities larger than 95 %.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Contributions to Atmospheric Physics
volume
71
issue
1
pages
18 pages
publisher
Deutsche Meteorologische Gesellschaft / Friedr. Vieweg & Sohn Verlagsgesellschaft mbh
external identifiers
  • scopus:0031801818
ISSN
0005-8173
language
English
LU publication?
yes
id
9749eb69-d468-4faa-9728-70c41cbbf846
date added to LUP
2019-05-16 09:09:32
date last changed
2022-01-31 20:01:05
@article{9749eb69-d468-4faa-9728-70c41cbbf846,
  abstract     = {{<p>The hygroscopic behavior of sub-micrometer atmospheric aerosol particles was studied with a Tandem Differential Mobility Analyzer (TDMA) at a field site in the Po Valley, Italy. The measurements were done in a continental polluted aerosol during the CHEMDROP fog and haze field experiment at San Pietro di Capofiume in November 1994. In this study, hygroscopic diameter growth factors of individual particles were measured when taken from a dry state, to a relative humidity of 90 %. The aerosol consisted of two groups of particles with different hygroscopic properties, as also seen in an earlier field experiment at the same location in 1989 and at other continental sites. The present work is a closure study on the hygroscopic behavior of sub-micrometer aerosol particles and their mass. Ammonium sulfate was used to model the hygroscopic growth with a model based on thermodynamic data for non-ideal aqueous solutions at water vapor subsaturation. The study was made in two steps: The first step is a comparison between hygroscopic active aerosol volume fractions derived from TDMA measurements on individual particles integrated over the particle size distributions, and collected volume fractions of major ions sampled by size resolved cascade impactors. The model of hygroscopic growth was also used, in the second step, to calculate ambient sizes of individual aerosol particles. These sizes were then compared to the actual ambient sizes as measured by the Droplet Aerosol Analyzer. The result shows agreement, within the estimated errors, between the integrated hygroscopic active volume fractions and the collected volume fractions of inorganic salts, for five events out of six studied. A mass balance could also be obtained between the masses collected with the impactors and the integrated volume distributions, by attributing reasonable densities to the hygroscopically active and inactive fractions. The differences between the calculated and measured ambient sizes were within measurement errors, when Raoult's law was used to model the occasions with relative humidities larger than 95 %.</p>}},
  author       = {{Berg, Olle H. and Swietlicki, Erik and Frank, Göran and Martinsson, Bengt G. and Cederfelt, Sven Inge and Laj, Paolo and Ricci, Loretta and Berner, Axel and Dusek, Ulrike and Galambos, Zsusanna and Mesfin, Nigatu S. and Yuskiewicz, Brett and Wiedensohler, Alfred and Stratmann, Frank and Orsini, Douglas}},
  issn         = {{0005-8173}},
  language     = {{eng}},
  month        = {{02}},
  number       = {{1}},
  pages        = {{47--64}},
  publisher    = {{Deutsche Meteorologische Gesellschaft / Friedr. Vieweg & Sohn Verlagsgesellschaft mbh}},
  series       = {{Contributions to Atmospheric Physics}},
  title        = {{Comparison of observed and modeled hygroscopic behavior of atmospheric particles}},
  volume       = {{71}},
  year         = {{1998}},
}