Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Continuous production of cellulose microbeads by rotary jet atomization

Callaghan, Ciarán ; Scott, Janet L. ; Edler, Karen J. LU orcid and Mattia, Davide (2022) In Journal of Colloid and Interface Science 627. p.1003-1010
Abstract

The replacement of plastic microbeads with biodegradable alternatives is essential due to the environmental persistence of plastics and their accumulation within the human food chain. Hypothesis: Cellulose microbeads could be such alternative, but their production is hindered by the high viscosity of cellulose solutions. It is expected that this viscosity can be harnessed to induce filament thinning of jets of cellulose solutions to create droplets with diameters within the micrometre range, which can then be converted to solid cellulose microbeads via phase inversion. Experiments: A 3D printed rotating multi-nozzle system was used to generate jets of cellulose dissolved in solutions of [EMIm][OAc] and DMSO. The jets were subject to... (More)

The replacement of plastic microbeads with biodegradable alternatives is essential due to the environmental persistence of plastics and their accumulation within the human food chain. Hypothesis: Cellulose microbeads could be such alternative, but their production is hindered by the high viscosity of cellulose solutions. It is expected that this viscosity can be harnessed to induce filament thinning of jets of cellulose solutions to create droplets with diameters within the micrometre range, which can then be converted to solid cellulose microbeads via phase inversion. Experiments: A 3D printed rotating multi-nozzle system was used to generate jets of cellulose dissolved in solutions of [EMIm][OAc] and DMSO. The jets were subject to Rayleigh breakup to generate droplets which were captured in an ethanol anti-solvent bath, initiating phase-inversion, and resulting in regeneration of the cellulose into beads. Findings: Control of both process (e.g. nozzle dimensions) and operational (e.g. rotational speed and pressure) parameters has allowed suppression of both satellite droplets generation and secondary droplet break-up, and tuning of the filament thinning process. This resulted in the continuous fabrication of cellulose microbeads in the size range 40–500 μm with narrow size distributions. This method can produce beads in size ranges not attainable by existing technologies.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
publishing date
type
Contribution to journal
publication status
published
keywords
Atomization, Biodegradable, Cellulose, Droplet, Microbeads
in
Journal of Colloid and Interface Science
volume
627
pages
8 pages
publisher
Elsevier
external identifiers
  • pmid:35905582
  • scopus:85135705484
ISSN
0021-9797
DOI
10.1016/j.jcis.2022.07.120
language
English
LU publication?
no
additional info
Publisher Copyright: © 2022 The Authors
id
97f9b9dd-92e1-4c34-8c9d-b9cac7b451bb
date added to LUP
2023-01-18 08:58:28
date last changed
2024-06-27 16:33:34
@article{97f9b9dd-92e1-4c34-8c9d-b9cac7b451bb,
  abstract     = {{<p>The replacement of plastic microbeads with biodegradable alternatives is essential due to the environmental persistence of plastics and their accumulation within the human food chain. Hypothesis: Cellulose microbeads could be such alternative, but their production is hindered by the high viscosity of cellulose solutions. It is expected that this viscosity can be harnessed to induce filament thinning of jets of cellulose solutions to create droplets with diameters within the micrometre range, which can then be converted to solid cellulose microbeads via phase inversion. Experiments: A 3D printed rotating multi-nozzle system was used to generate jets of cellulose dissolved in solutions of [EMIm][OAc] and DMSO. The jets were subject to Rayleigh breakup to generate droplets which were captured in an ethanol anti-solvent bath, initiating phase-inversion, and resulting in regeneration of the cellulose into beads. Findings: Control of both process (e.g. nozzle dimensions) and operational (e.g. rotational speed and pressure) parameters has allowed suppression of both satellite droplets generation and secondary droplet break-up, and tuning of the filament thinning process. This resulted in the continuous fabrication of cellulose microbeads in the size range 40–500 μm with narrow size distributions. This method can produce beads in size ranges not attainable by existing technologies.</p>}},
  author       = {{Callaghan, Ciarán and Scott, Janet L. and Edler, Karen J. and Mattia, Davide}},
  issn         = {{0021-9797}},
  keywords     = {{Atomization; Biodegradable; Cellulose; Droplet; Microbeads}},
  language     = {{eng}},
  pages        = {{1003--1010}},
  publisher    = {{Elsevier}},
  series       = {{Journal of Colloid and Interface Science}},
  title        = {{Continuous production of cellulose microbeads by rotary jet atomization}},
  url          = {{http://dx.doi.org/10.1016/j.jcis.2022.07.120}},
  doi          = {{10.1016/j.jcis.2022.07.120}},
  volume       = {{627}},
  year         = {{2022}},
}