Advanced

A COMPARISON of STELLAR ELEMENTAL ABUNDANCE TECHNIQUES and MEASUREMENTS

Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.; Desch, Steven J.; Anbar, Ariel D.; Adibekyan, Vardan; Blanco-Cuaresma, Sergi; Carlberg, Joleen K.; Mena, Elisa Delgado and Liu, Fan LU , et al. (2016) In Astrophysical Journal, Supplement Series 226(1).
Abstract

Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia,... (More)

Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
stars: abundances, stars: individual (HD 361, HD 10700, HD 121504, HD 202206), techniques: spectroscopic
in
Astrophysical Journal, Supplement Series
volume
226
issue
1
publisher
University of Chicago Press
external identifiers
  • scopus:84989930058
  • wos:000384015400004
ISSN
0067-0049
DOI
10.3847/0067-0049/226/1/4
language
English
LU publication?
yes
id
9a679a3e-231f-4304-aafd-65b7b70d3eea
date added to LUP
2016-11-29 12:29:45
date last changed
2017-11-12 04:26:37
@article{9a679a3e-231f-4304-aafd-65b7b70d3eea,
  abstract     = {<p>Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.</p>},
  articleno    = {4},
  author       = {Hinkel, Natalie R. and Young, Patrick A. and Pagano, Michael D. and Desch, Steven J. and Anbar, Ariel D. and Adibekyan, Vardan and Blanco-Cuaresma, Sergi and Carlberg, Joleen K. and Mena, Elisa Delgado and Liu, Fan and Nordlander, Thomas and Sousa, Sergio G. and Korn, Andreas and Gruyters, Pieter and Heiter, Ulrike and Jofré, Paula and Santos, Nuno C. and Soubiran, Caroline},
  issn         = {0067-0049},
  keyword      = {stars: abundances,stars: individual (HD 361, HD 10700, HD 121504, HD 202206),techniques: spectroscopic},
  language     = {eng},
  month        = {09},
  number       = {1},
  publisher    = {University of Chicago Press},
  series       = {Astrophysical Journal, Supplement Series},
  title        = {A COMPARISON of STELLAR ELEMENTAL ABUNDANCE TECHNIQUES and MEASUREMENTS},
  url          = {http://dx.doi.org/10.3847/0067-0049/226/1/4},
  volume       = {226},
  year         = {2016},
}