Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Type 2 inflammatory biomarker response after exercise challenge testing

Tufvesson, Ellen LU ; Stenberg, Henning LU ; Ankerst, Jaro LU orcid and Bjermer, Leif LU (2020) In Journal of Asthma and Allergy 13. p.269-274
Abstract

Introduction: Exercise-induced bronchoconstriction is due to osmotic stimulus of the airway epithelium and leads to a cascade of biomarker release from several inflammatory cells. Several type 2 (T2) mediators have been linked to exercise-induced bronchoconstriction, but the T2 response per se has not been described during exercise. The aim of this study was therefore to investigate T2 biomarkers in plasma and urine from subjects with asthma and healthy controls before and after an exercise challenge. Methods: Twenty-two subjects with mild asthma and 18 healthy controls performed an exercise challenge test on a treadmill, and fractional exhaled NO (FeNO) was measured at baseline. Blood and urine samples were collected repeatedly during... (More)

Introduction: Exercise-induced bronchoconstriction is due to osmotic stimulus of the airway epithelium and leads to a cascade of biomarker release from several inflammatory cells. Several type 2 (T2) mediators have been linked to exercise-induced bronchoconstriction, but the T2 response per se has not been described during exercise. The aim of this study was therefore to investigate T2 biomarkers in plasma and urine from subjects with asthma and healthy controls before and after an exercise challenge. Methods: Twenty-two subjects with mild asthma and 18 healthy controls performed an exercise challenge test on a treadmill, and fractional exhaled NO (FeNO) was measured at baseline. Blood and urine samples were collected repeatedly during 60 min after the test and Interleukin-13 (IL-13), thymus and activation-related chemokine (TARC), periostin and leukotrienes were measured. Results: Asthmatics and controls showed similar levels of IL-13, TARC, periostin and CysLT in plasma at baseline, and there were no differences in baseline levels between subjects with a negative and positive exercise challenge. After exercise, there was an overall increase in interleukin-13 (IL-13) in plasma in all subjects (p<0.001), with a peak at 10 min after the exercise challenge in both the asthmatic and control group. An increase in TARC in plasma was also seen (p<0.001), but only in the control subjects. In contrast, Cys-LT in plasma showed an overall decrease in all subjects (p<0.001), while periostin in plasma did not change. In conjunction with plasma, the level of IL-13 was increased in urine 30 min after the exercise challenge (p=0.002) and decreased again at 60 min (p=0.004). Similarly, leukotriene E4 (LTE4) was increased in urine samples, with a peak at 60 min and most pronounced in asthmatic subjects (p<0.001) but was seen also in controls (p=0.008). Discussion: In conclusion, circulating levels of IL-13 are increased after exercise to the same extent in asthmatics and healthy control subjects, which indicates a physiological rather than a pathophysiological response. Also, the levels of TARC and leukotrienes were affected after exercise.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Asthma, Biomarkers, Exercise, Inflammation
in
Journal of Asthma and Allergy
volume
13
pages
6 pages
publisher
Dove Medical Press Ltd.
external identifiers
  • pmid:32904520
  • scopus:85090813927
ISSN
1178-6965
DOI
10.2147/JAA.S258561
language
English
LU publication?
yes
id
9c1e79c9-7593-431c-a41b-06776741a434
date added to LUP
2020-10-21 10:30:01
date last changed
2024-03-20 18:03:54
@article{9c1e79c9-7593-431c-a41b-06776741a434,
  abstract     = {{<p>Introduction: Exercise-induced bronchoconstriction is due to osmotic stimulus of the airway epithelium and leads to a cascade of biomarker release from several inflammatory cells. Several type 2 (T2) mediators have been linked to exercise-induced bronchoconstriction, but the T2 response per se has not been described during exercise. The aim of this study was therefore to investigate T2 biomarkers in plasma and urine from subjects with asthma and healthy controls before and after an exercise challenge. Methods: Twenty-two subjects with mild asthma and 18 healthy controls performed an exercise challenge test on a treadmill, and fractional exhaled NO (FeNO) was measured at baseline. Blood and urine samples were collected repeatedly during 60 min after the test and Interleukin-13 (IL-13), thymus and activation-related chemokine (TARC), periostin and leukotrienes were measured. Results: Asthmatics and controls showed similar levels of IL-13, TARC, periostin and CysLT in plasma at baseline, and there were no differences in baseline levels between subjects with a negative and positive exercise challenge. After exercise, there was an overall increase in interleukin-13 (IL-13) in plasma in all subjects (p&lt;0.001), with a peak at 10 min after the exercise challenge in both the asthmatic and control group. An increase in TARC in plasma was also seen (p&lt;0.001), but only in the control subjects. In contrast, Cys-LT in plasma showed an overall decrease in all subjects (p&lt;0.001), while periostin in plasma did not change. In conjunction with plasma, the level of IL-13 was increased in urine 30 min after the exercise challenge (p=0.002) and decreased again at 60 min (p=0.004). Similarly, leukotriene E<sub>4</sub> (LTE<sub>4</sub>) was increased in urine samples, with a peak at 60 min and most pronounced in asthmatic subjects (p&lt;0.001) but was seen also in controls (p=0.008). Discussion: In conclusion, circulating levels of IL-13 are increased after exercise to the same extent in asthmatics and healthy control subjects, which indicates a physiological rather than a pathophysiological response. Also, the levels of TARC and leukotrienes were affected after exercise.</p>}},
  author       = {{Tufvesson, Ellen and Stenberg, Henning and Ankerst, Jaro and Bjermer, Leif}},
  issn         = {{1178-6965}},
  keywords     = {{Asthma; Biomarkers; Exercise; Inflammation}},
  language     = {{eng}},
  pages        = {{269--274}},
  publisher    = {{Dove Medical Press Ltd.}},
  series       = {{Journal of Asthma and Allergy}},
  title        = {{Type 2 inflammatory biomarker response after exercise challenge testing}},
  url          = {{http://dx.doi.org/10.2147/JAA.S258561}},
  doi          = {{10.2147/JAA.S258561}},
  volume       = {{13}},
  year         = {{2020}},
}