Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Multi-pass cells for post-compression of ultrashort laser pulses

Viotti, Anne Lise LU orcid ; Seidel, Marcus ; Escoto, Esmerando ; Rajhans, Supriya ; Leemans, Wim P. ; Hartl, Ingmar and Heyl, Christoph M. LU (2022) In Optica 9(2). p.197-216
Abstract

Ultrafast lasers reaching extremely high powers within short fractions of time enable a plethora of applications. They grant advanced material processing capabilities, are effective drivers for secondary photon and particle sources, and reveal extreme light-matter interactions. They also supply platforms for compact accelerator technologies, with great application prospects for tumor therapy or medical diagnostics. Many of these scientific cases benefit from sources with higher average and peak powers. Following mode-locked dye and titanium-doped sapphire lasers, broadband optical parametric amplifiers have emerged as high peak- and average power ultrashort pulse lasers.Amuch more powerefficient alternative is provided by direct... (More)

Ultrafast lasers reaching extremely high powers within short fractions of time enable a plethora of applications. They grant advanced material processing capabilities, are effective drivers for secondary photon and particle sources, and reveal extreme light-matter interactions. They also supply platforms for compact accelerator technologies, with great application prospects for tumor therapy or medical diagnostics. Many of these scientific cases benefit from sources with higher average and peak powers. Following mode-locked dye and titanium-doped sapphire lasers, broadband optical parametric amplifiers have emerged as high peak- and average power ultrashort pulse lasers.Amuch more powerefficient alternative is provided by direct post-compression of high-power diode-pumped ytterbium lasers-a route that advanced to another level with the invention of a novel spectral broadening approach, the multi-pass cell technique. The method has enabled benchmark results yielding sub-50-fs pules at average powers exceeding 1 kW, has facilitated femtosecond post-compression at pulse energies above 100 mJ with large compression ratios, and supports picosecond to few-cycle pulses with compact setups. The striking progress of the technique in the past five years puts light sources with tens to hundreds of TW peak and multiple kW of average power in sight-an entirely new parameter regime for ultrafast lasers. In this review, we introduce the underlying concepts and give brief guidelines for multi-pass cell design and implementation. We then present an overview of the achieved performances with both bulk and gas-filled multipass cells.Moreover, we discuss prospective advances enabled by this method, in particular including opportunities for applications demanding ultrahigh peak-power, high repetition rate lasers such as plasma accelerators and laser-driven extreme ultraviolet sources.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Optica
volume
9
issue
2
pages
20 pages
publisher
Optical Society of America
external identifiers
  • scopus:85127273265
ISSN
2334-2536
DOI
10.1364/OPTICA.449225
language
English
LU publication?
yes
id
9e62e4f3-82ad-45c1-9e64-4a94bc63e440
date added to LUP
2023-01-19 11:58:19
date last changed
2023-12-06 00:57:42
@article{9e62e4f3-82ad-45c1-9e64-4a94bc63e440,
  abstract     = {{<p>Ultrafast lasers reaching extremely high powers within short fractions of time enable a plethora of applications. They grant advanced material processing capabilities, are effective drivers for secondary photon and particle sources, and reveal extreme light-matter interactions. They also supply platforms for compact accelerator technologies, with great application prospects for tumor therapy or medical diagnostics. Many of these scientific cases benefit from sources with higher average and peak powers. Following mode-locked dye and titanium-doped sapphire lasers, broadband optical parametric amplifiers have emerged as high peak- and average power ultrashort pulse lasers.Amuch more powerefficient alternative is provided by direct post-compression of high-power diode-pumped ytterbium lasers-a route that advanced to another level with the invention of a novel spectral broadening approach, the multi-pass cell technique. The method has enabled benchmark results yielding sub-50-fs pules at average powers exceeding 1 kW, has facilitated femtosecond post-compression at pulse energies above 100 mJ with large compression ratios, and supports picosecond to few-cycle pulses with compact setups. The striking progress of the technique in the past five years puts light sources with tens to hundreds of TW peak and multiple kW of average power in sight-an entirely new parameter regime for ultrafast lasers. In this review, we introduce the underlying concepts and give brief guidelines for multi-pass cell design and implementation. We then present an overview of the achieved performances with both bulk and gas-filled multipass cells.Moreover, we discuss prospective advances enabled by this method, in particular including opportunities for applications demanding ultrahigh peak-power, high repetition rate lasers such as plasma accelerators and laser-driven extreme ultraviolet sources.</p>}},
  author       = {{Viotti, Anne Lise and Seidel, Marcus and Escoto, Esmerando and Rajhans, Supriya and Leemans, Wim P. and Hartl, Ingmar and Heyl, Christoph M.}},
  issn         = {{2334-2536}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{197--216}},
  publisher    = {{Optical Society of America}},
  series       = {{Optica}},
  title        = {{Multi-pass cells for post-compression of ultrashort laser pulses}},
  url          = {{http://dx.doi.org/10.1364/OPTICA.449225}},
  doi          = {{10.1364/OPTICA.449225}},
  volume       = {{9}},
  year         = {{2022}},
}