Compact exceptional simple Kantor triple systems defined on tensor products of composition algebras
(2007) In Communications in Algebra 35(11). p.3699-3712- Abstract
- In this article we give the classification of compact exceptional simple Kantor triple systems defined on tensor products of composition algebras
$A=\mathbb{A}_1\otimes\mathbb{A}_2$ such that
their Kantor algebras ${\cal L}(\phi,A)$ are real forms of exceptional simple Lie algebras.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1670170
- author
- Mondoc, Daniel LU
- publishing date
- 2007
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- structurable algebras, composition algebras, Kantor triple systems
- in
- Communications in Algebra
- volume
- 35
- issue
- 11
- pages
- 3699 - 3712
- publisher
- Taylor & Francis
- external identifiers
-
- scopus:35448982632
- ISSN
- 0092-7872
- DOI
- 10.1080/00927870701404739
- language
- English
- LU publication?
- no
- id
- acaad611-e4b6-4ff4-afc5-46ba882552c5 (old id 1670170)
- date added to LUP
- 2016-04-01 11:43:14
- date last changed
- 2025-10-14 09:23:42
@article{acaad611-e4b6-4ff4-afc5-46ba882552c5,
abstract = {{In this article we give the classification of compact exceptional simple Kantor triple systems defined on tensor products of composition algebras <br/><br>
$A=\mathbb{A}_1\otimes\mathbb{A}_2$ such that<br/><br>
their Kantor algebras ${\cal L}(\phi,A)$ are real forms of exceptional simple Lie algebras.}},
author = {{Mondoc, Daniel}},
issn = {{0092-7872}},
keywords = {{structurable algebras; composition algebras; Kantor triple systems}},
language = {{eng}},
number = {{11}},
pages = {{3699--3712}},
publisher = {{Taylor & Francis}},
series = {{Communications in Algebra}},
title = {{Compact exceptional simple Kantor triple systems defined on tensor products of composition algebras}},
url = {{http://dx.doi.org/10.1080/00927870701404739}},
doi = {{10.1080/00927870701404739}},
volume = {{35}},
year = {{2007}},
}