Design and Optimization of In-Cycle Closed-Loop Combustion Control with Multiple Injections
(2021)- Abstract
- With the increasing demand of transportation, biofuels play a fundamental role in the transition to sustainable powertrains. For the increased uncertainty of biofuel combustion properties, advanced combustion control systems have the potential to operate the engine with high flexibility while maintaining a high efficiency and robustness. For that purpose, this thesis investigates the analysis, design, implementation, and application of closed-loop Diesel combustion control algorithms. By fast in-cylinder pressure measurements, the combustion evolution can be monitored to adjust a multi-pulse fuel injection within the same cycle. This is referred to as in-cycle closed-loop combustion control.
The design of the controller is based... (More) - With the increasing demand of transportation, biofuels play a fundamental role in the transition to sustainable powertrains. For the increased uncertainty of biofuel combustion properties, advanced combustion control systems have the potential to operate the engine with high flexibility while maintaining a high efficiency and robustness. For that purpose, this thesis investigates the analysis, design, implementation, and application of closed-loop Diesel combustion control algorithms. By fast in-cylinder pressure measurements, the combustion evolution can be monitored to adjust a multi-pulse fuel injection within the same cycle. This is referred to as in-cycle closed-loop combustion control.
The design of the controller is based on the experimental characterization of the combustion dynamics by the heat release analysis, improved by the proposed cylinder volume deviation model. The pilot combustion, its robustness and dynamics, and its effects on the main injection were analyzed. The pilot burnt mass significantly affects the main combustion timing and heat release shape, which determines the engine efficiency and emissions. By the feedback of a pilot mass virtual sensor, these variations can be compensated by the closed-loop feedback control of the main injection. Predictive models are introduced to overcome the limitations imposed by the intrinsic delay between the control action (fuel injection) and output measurements (pressure increase). High prediction accuracy is possible by the on-line model adaptation, where a reduced multi-cylinder method is proposed to reduce their complexity. The predictive control strategy permits to reduce the stochastic cyclic variations of the controlled combustion metrics. In-cycle controllability of the combustion requires simultaneous observability of the pilot combustion and control authority of the main injection. The imposition of this restriction may decrease the indicated efficiency and increase the operational constraints violation compared to open-loop operation. This is especially significant for pilot misfire. For in-cycle detection of pilot misfire, stochastic and deterministic methods were investigated. The on-line pilot misfire diagnosis was feedback for its compensation by a second pilot injection. High flexibility on the combustion control strategy was achieved by a modular design of the controller. A finite-state machine was investigated for the synchronization of the feedback signals (measurements and model-based predictions), active controller and output action. The experimental results showed an increased tracking error performance and shorter transients, regardless of operating conditions and fuel used.
To increase the indicated efficiency, direct and indirect optimization methods for the combustion control were investigated. An in-cycle controller to reach the maximum indicated efficiency increased it by +0.42%unit. The indirect method took advantage of the reduced cyclic variations to optimize the indicated efficiency under constraints on hardware and emission limits. By including the probability and in-cycle compensation of pilot misfire, the optimization of the set-point reference of CA50 increased the indicated efficiency by +0.6unit at mid loads, compared to open-loop operation.
Tools to evaluate the total cost of the system were provided by the quantification of the hardware requirements for each of the controller modules. (Less) - Abstract (Swedish)
- Ett samhälle med ökande behov av transporttjänster och stort behov av minskade växthusgasutsläpp måste bryta sitt beroende av fossila bränslen. Introduktionen av alternativa, elektrifierade, fordonsdrivlinor kräver tekniska lösningar och långsiktiga ekonomiska investeringar som inte finns än. Samtidigt ökar efterfrågan på förbränningsmotorbaserade drivlinor, eftersom de på ett tillförlitligt och ekonomiskt sätt kan leverera det mekaniska arbete som behövs för tunga transporter. Biobränslen spelar alltså en nyckelroll i ett hållbart transportsystem.
Allt hårdare utsläppslagstiftning ökar kraven på motorns styrsystem och kräver i sin tur fler och fler sensorer och ställdon. Ökad användning av biobränslen med varierande... (More) - Ett samhälle med ökande behov av transporttjänster och stort behov av minskade växthusgasutsläpp måste bryta sitt beroende av fossila bränslen. Introduktionen av alternativa, elektrifierade, fordonsdrivlinor kräver tekniska lösningar och långsiktiga ekonomiska investeringar som inte finns än. Samtidigt ökar efterfrågan på förbränningsmotorbaserade drivlinor, eftersom de på ett tillförlitligt och ekonomiskt sätt kan leverera det mekaniska arbete som behövs för tunga transporter. Biobränslen spelar alltså en nyckelroll i ett hållbart transportsystem.
Allt hårdare utsläppslagstiftning ökar kraven på motorns styrsystem och kräver i sin tur fler och fler sensorer och ställdon. Ökad användning av biobränslen med varierande förbränningsegenskaper ställer ytterligare krav på styrsystem för att säkerställa låg bränsleförbrukning och hög driftsäkerhet. Avhandlingen behandlar analys, design, implementering och tillämpning av algoritmer för återkopplad dieselförbränningsreglering. Genom mätning av trycket i motorns cylindrar kan förbränningens övervakas snabbt nog för att styra flera bränsleinsprutningar i en och samma cykel. Detta koncept benämns "in-cycle closed-loop combustion control" vilket kan översättas med "återkopplad styrning under pågående förbränning". Pilot- och huvudinsprutning av bränsle analyseras och beräknas inom nanosekunder och sker baserat på det uppmätta cylindertrycket i en FPGA (Field Programmable Gate Array).
Vid små pilotbränslemängder måste bränsleinsprutarna aktiveras under kort tid vilket leder till stor osäkerhet i mängden bränsle som sprutas in. Samspelet mellan pilotinsprutning och huvudinsprutning studeras i avhandlingen och en strategi för hur huvudinsprutningen kan justeras för att kompensera för t.ex. utebliven pilotinsprutning beskrivs. En virtuell pilotbränslemängdssensor baserad på tryckmätningen anger bränslemängden med en noggrannhet på ±0.5mg. En prediktiv modell utvecklades för de fall då tidsfördröjningen var för stor.
I avhandlingen jämförs direkta och indirekta metoder för att minimera bränsle-förbrukningen genom återkopplad styrning under förbränningen. Direkta metoder innebär att bränsleinsprutningen och förbränningen styrs så att den beräknade bränsle-förbrukningen blir så låg som möjligt medan indirekta metoder försöker bibehålla förkalibrerade förbränningsegenskaper (t.ex. förbränningstidpunkt) som ger lägsta bränsle-förbrukning. Med direkta metoder uppnåddes en ökning av verkningsgraden med 0.42%enheter. En begränsande faktor var lineariseringen i regulatorn som var nödvändig för att hantera regleringen i FPGA. Den indirekta metoden ledde till minskad förbränningsvariation och höjde verkningsgraden samtidigt som samtliga hårdvaru- och utsläppsbegränsningar uppfylldes. Reglering i förbränningscykeln minskar känsligheten för pilotmisständning och verkningsgraden ökas med 0.6%enheter för motorlaster i mellanregistret och med 1.8%enheter för låga laster genom att förbränningstidpunkten styrs under förbränningen till sitt kalibrerade värde.
Hårdvarukraven för den typ av styrning som beskrivs i avhandlingen analyserades och ett verktyg för utvärdering av systemkostnaderna togs fram. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/afeb6cfc-2aa4-4230-b51e-492b9376791e
- author
- Jorques Moreno, Carlos LU
- supervisor
-
- Ola Stenlåås LU
- Per Tunestål LU
- opponent
-
- Prof. Zheng, Ming, University of Windsor, Canada.
- organization
- publishing date
- 2021-04-20
- type
- Thesis
- publication status
- published
- subject
- keywords
- Diesel Combustion, Pilot-Main Injection, Pilot Mass Estimation, Cylinder Volume Estimation, Bayesian Estimation, In-Cycle Combustion Controllability, In-Cycle Combustion Control, Model Predictive Combustion Control, Stochastic Combustion Optimization, Hardware Quantification
- pages
- 491 pages
- publisher
- LTH, Lund University
- defense location
- Lecture hall KC:A, Kemicentrum, Naturvetarvägen 14, Faculty of Engineering LTH, Lund University, Lund.
- defense date
- 2021-05-14 10:15:00
- ISBN
- 978-91-7895-828-3
- 978-91-7895-827-6
- project
- Closed-Loop Diesel Control - Part 2
- Closed Loop Diesel Control part 3
- language
- English
- LU publication?
- yes
- id
- afeb6cfc-2aa4-4230-b51e-492b9376791e
- date added to LUP
- 2021-04-20 10:34:34
- date last changed
- 2021-11-26 08:26:29
@phdthesis{afeb6cfc-2aa4-4230-b51e-492b9376791e, abstract = {{With the increasing demand of transportation, biofuels play a fundamental role in the transition to sustainable powertrains. For the increased uncertainty of biofuel combustion properties, advanced combustion control systems have the potential to operate the engine with high flexibility while maintaining a high efficiency and robustness. For that purpose, this thesis investigates the analysis, design, implementation, and application of closed-loop Diesel combustion control algorithms. By fast in-cylinder pressure measurements, the combustion evolution can be monitored to adjust a multi-pulse fuel injection within the same cycle. This is referred to as in-cycle closed-loop combustion control.<br/><br/>The design of the controller is based on the experimental characterization of the combustion dynamics by the heat release analysis, improved by the proposed cylinder volume deviation model. The pilot combustion, its robustness and dynamics, and its effects on the main injection were analyzed. The pilot burnt mass significantly affects the main combustion timing and heat release shape, which determines the engine efficiency and emissions. By the feedback of a pilot mass virtual sensor, these variations can be compensated by the closed-loop feedback control of the main injection. Predictive models are introduced to overcome the limitations imposed by the intrinsic delay between the control action (fuel injection) and output measurements (pressure increase). High prediction accuracy is possible by the on-line model adaptation, where a reduced multi-cylinder method is proposed to reduce their complexity. The predictive control strategy permits to reduce the stochastic cyclic variations of the controlled combustion metrics. In-cycle controllability of the combustion requires simultaneous observability of the pilot combustion and control authority of the main injection. The imposition of this restriction may decrease the indicated efficiency and increase the operational constraints violation compared to open-loop operation. This is especially significant for pilot misfire. For in-cycle detection of pilot misfire, stochastic and deterministic methods were investigated. The on-line pilot misfire diagnosis was feedback for its compensation by a second pilot injection. High flexibility on the combustion control strategy was achieved by a modular design of the controller. A finite-state machine was investigated for the synchronization of the feedback signals (measurements and model-based predictions), active controller and output action. The experimental results showed an increased tracking error performance and shorter transients, regardless of operating conditions and fuel used.<br/><br/>To increase the indicated efficiency, direct and indirect optimization methods for the combustion control were investigated. An in-cycle controller to reach the maximum indicated efficiency increased it by +0.42%unit. The indirect method took advantage of the reduced cyclic variations to optimize the indicated efficiency under constraints on hardware and emission limits. By including the probability and in-cycle compensation of pilot misfire, the optimization of the set-point reference of CA50 increased the indicated efficiency by +0.6unit at mid loads, compared to open-loop operation.<br/><br/>Tools to evaluate the total cost of the system were provided by the quantification of the hardware requirements for each of the controller modules.}}, author = {{Jorques Moreno, Carlos}}, isbn = {{978-91-7895-828-3}}, keywords = {{Diesel Combustion; Pilot-Main Injection; Pilot Mass Estimation; Cylinder Volume Estimation; Bayesian Estimation; In-Cycle Combustion Controllability; In-Cycle Combustion Control; Model Predictive Combustion Control; Stochastic Combustion Optimization; Hardware Quantification}}, language = {{eng}}, month = {{04}}, publisher = {{LTH, Lund University}}, school = {{Lund University}}, title = {{Design and Optimization of In-Cycle Closed-Loop Combustion Control with Multiple Injections}}, url = {{https://lup.lub.lu.se/search/files/96902493/PhD_Thesis_Open.pdf}}, year = {{2021}}, }