Rational points close to non-singular algebraic curves
(2023) In Mathematika 69(4). p.957-987- Abstract
We study the density of solutions to Diophantine inequalities involving non-singular ternary forms, or equivalently, the density of rational points close to non-singular plane algebraic curves.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/b00444b6-7616-4d01-841e-aead332a9f26
- author
- Adiceam, Faustin and Marmon, Oscar LU
- organization
- publishing date
- 2023
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Mathematika
- volume
- 69
- issue
- 4
- pages
- 31 pages
- publisher
- John Wiley & Sons Inc.
- external identifiers
-
- scopus:85163854675
- ISSN
- 0025-5793
- DOI
- 10.1112/mtk.12214
- language
- English
- LU publication?
- yes
- id
- b00444b6-7616-4d01-841e-aead332a9f26
- date added to LUP
- 2023-09-01 13:55:07
- date last changed
- 2025-10-14 08:55:07
@article{b00444b6-7616-4d01-841e-aead332a9f26,
abstract = {{<p>We study the density of solutions to Diophantine inequalities involving non-singular ternary forms, or equivalently, the density of rational points close to non-singular plane algebraic curves.</p>}},
author = {{Adiceam, Faustin and Marmon, Oscar}},
issn = {{0025-5793}},
language = {{eng}},
number = {{4}},
pages = {{957--987}},
publisher = {{John Wiley & Sons Inc.}},
series = {{Mathematika}},
title = {{Rational points close to non-singular algebraic curves}},
url = {{http://dx.doi.org/10.1112/mtk.12214}},
doi = {{10.1112/mtk.12214}},
volume = {{69}},
year = {{2023}},
}