Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Oxygen for breathlessness in patients with chronic obstructive pulmonary disease who do not qualify for home oxygen therapy

Ekström, Magnus LU orcid ; Ahmadi, Zainab LU ; Bornefalk-Hermansson, Anna ; Abernethy, Amy and Currow, David (2016) In Cochrane Database of Systematic Reviews 2016(11).
Abstract

Background: Breathlessness is a cardinal symptom of chronic obstructive pulmonary disease (COPD). Long-term oxygen therapy (LTOT) is given to improve survival time in people with COPD and severe chronic hypoxaemia at rest. The efficacy of oxygen therapy for breathlessness and health-related quality of life (HRQOL) in people with COPD and mild or no hypoxaemia who do not meet the criteria for LTOT has not been established. Objectives: To determine the efficacy of oxygen versus air in mildly hypoxaemic or non-hypoxaemic patients with COPD in terms of (1) breathlessness; (2) HRQOL; (3) patient preference whether to continue therapy; and (4) oxygen-related adverse events. Search methods: We searched the Cochrane Airways Group Register, the... (More)

Background: Breathlessness is a cardinal symptom of chronic obstructive pulmonary disease (COPD). Long-term oxygen therapy (LTOT) is given to improve survival time in people with COPD and severe chronic hypoxaemia at rest. The efficacy of oxygen therapy for breathlessness and health-related quality of life (HRQOL) in people with COPD and mild or no hypoxaemia who do not meet the criteria for LTOT has not been established. Objectives: To determine the efficacy of oxygen versus air in mildly hypoxaemic or non-hypoxaemic patients with COPD in terms of (1) breathlessness; (2) HRQOL; (3) patient preference whether to continue therapy; and (4) oxygen-related adverse events. Search methods: We searched the Cochrane Airways Group Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and Embase, to 12 July 2016, for randomised controlled trials (RCTs). We handsearched the reference lists of included articles. Selection criteria: We included RCTs of the effects of non-invasive oxygen versus air on breathlessness, HRQOL or patient preference to continue therapy among people with COPD and mild or no hypoxaemia (partial pressure of oxygen (PaO2) > 7.3 kPa) who were not already receiving LTOT. Two review authors independently assessed articles for inclusion in the review. Data collection and analysis: Two review authors independently collected and analysed data. We assessed risk of bias by using the Cochrane 'Risk of bias tool'. We pooled effects recorded on different scales as standardised mean differences (SMDs) with 95% confidence intervals (CIs) using random-effects models. Lower SMDs indicated decreased breathlessness and reduced HRQOL. We performed subanalyses and sensitivity analyses and assessed the quality of evidence according to the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. Main results: Compared with the previous review, which was published in 2011, we included 14 additional studies (493 participants), excluded one study and included data for meta-analysis of HRQOL. In total, we included in this review 44 studies including 1195 participants, and we included 33 of these (901 participants)in the meta-analysis. We found that breathlessness during exercise or daily activities was reduced by oxygen compared with air (32 studies; 865 participants; SMD -0.34, 95% CI -0.48 to -0.21; I2 = 37%; low-quality evidence). This translates to a decrease in breathlessness of about 0.7 points on a 0 to 10 numerical rating scale. In contrast, we found no effect of short-burst oxygen given before exercise (four studies; 90 participants; SMD 0.01, 95% CI -0.26 to 0.28; I2 = 0%; low-quality evidence). Oxygen reduced breathlessness measured during exercise tests (25 studies; 442 participants; SMD -0.34, 95% CI -0.46 to -0.22; I2 = 29%; moderate-quality evidence), whereas evidence of an effect on breathlessness measured in daily life was limited (two studies; 274 participants; SMD -0.13, 95% CI, -0.37 to 0.11; I2 = 0%; low-quality evidence). Oxygen did not clearly affect HRQOL (five studies; 267 participants; SMD 0.10, 95% CI -0.06 to 0.26; I2 = 0%; low-quality evidence). Patient preference and adverse events could not be analysed owing to insufficient data. Authors' conclusions: We are moderately confident that oxygen can relieve breathlessness when given during exercise to mildly hypoxaemic and non-hypoxaemic people with chronic obstructive pulmonary disease who would not otherwise qualify for home oxygen therapy. Most evidence pertains to acute effects during exercise tests, and no evidence indicates that oxygen decreases breathlessness in the daily life setting. Findings show that oxygen does not affect health-related quality of life.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Cochrane Database of Systematic Reviews
volume
2016
issue
11
article number
CD006429
publisher
Wiley-Blackwell
external identifiers
  • pmid:27886372
  • wos:000389600100025
  • scopus:85000645658
ISSN
1469-493X
DOI
10.1002/14651858.CD006429.pub3
language
English
LU publication?
yes
id
b1ec59ad-b384-432f-9af8-03ff9f2f6e8b
date added to LUP
2016-12-19 09:44:05
date last changed
2024-03-22 14:17:42
@article{b1ec59ad-b384-432f-9af8-03ff9f2f6e8b,
  abstract     = {{<p>Background: Breathlessness is a cardinal symptom of chronic obstructive pulmonary disease (COPD). Long-term oxygen therapy (LTOT) is given to improve survival time in people with COPD and severe chronic hypoxaemia at rest. The efficacy of oxygen therapy for breathlessness and health-related quality of life (HRQOL) in people with COPD and mild or no hypoxaemia who do not meet the criteria for LTOT has not been established. Objectives: To determine the efficacy of oxygen versus air in mildly hypoxaemic or non-hypoxaemic patients with COPD in terms of (1) breathlessness; (2) HRQOL; (3) patient preference whether to continue therapy; and (4) oxygen-related adverse events. Search methods: We searched the Cochrane Airways Group Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and Embase, to 12 July 2016, for randomised controlled trials (RCTs). We handsearched the reference lists of included articles. Selection criteria: We included RCTs of the effects of non-invasive oxygen versus air on breathlessness, HRQOL or patient preference to continue therapy among people with COPD and mild or no hypoxaemia (partial pressure of oxygen (PaO<sub>2</sub>) &gt; 7.3 kPa) who were not already receiving LTOT. Two review authors independently assessed articles for inclusion in the review. Data collection and analysis: Two review authors independently collected and analysed data. We assessed risk of bias by using the Cochrane 'Risk of bias tool'. We pooled effects recorded on different scales as standardised mean differences (SMDs) with 95% confidence intervals (CIs) using random-effects models. Lower SMDs indicated decreased breathlessness and reduced HRQOL. We performed subanalyses and sensitivity analyses and assessed the quality of evidence according to the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. Main results: Compared with the previous review, which was published in 2011, we included 14 additional studies (493 participants), excluded one study and included data for meta-analysis of HRQOL. In total, we included in this review 44 studies including 1195 participants, and we included 33 of these (901 participants)in the meta-analysis. We found that breathlessness during exercise or daily activities was reduced by oxygen compared with air (32 studies; 865 participants; SMD -0.34, 95% CI -0.48 to -0.21; I<sup>2</sup> = 37%; low-quality evidence). This translates to a decrease in breathlessness of about 0.7 points on a 0 to 10 numerical rating scale. In contrast, we found no effect of short-burst oxygen given before exercise (four studies; 90 participants; SMD 0.01, 95% CI -0.26 to 0.28; I<sup>2</sup> = 0%; low-quality evidence). Oxygen reduced breathlessness measured during exercise tests (25 studies; 442 participants; SMD -0.34, 95% CI -0.46 to -0.22; I<sup>2</sup> = 29%; moderate-quality evidence), whereas evidence of an effect on breathlessness measured in daily life was limited (two studies; 274 participants; SMD -0.13, 95% CI, -0.37 to 0.11; I<sup>2</sup> = 0%; low-quality evidence). Oxygen did not clearly affect HRQOL (five studies; 267 participants; SMD 0.10, 95% CI -0.06 to 0.26; I<sup>2</sup> = 0%; low-quality evidence). Patient preference and adverse events could not be analysed owing to insufficient data. Authors' conclusions: We are moderately confident that oxygen can relieve breathlessness when given during exercise to mildly hypoxaemic and non-hypoxaemic people with chronic obstructive pulmonary disease who would not otherwise qualify for home oxygen therapy. Most evidence pertains to acute effects during exercise tests, and no evidence indicates that oxygen decreases breathlessness in the daily life setting. Findings show that oxygen does not affect health-related quality of life.</p>}},
  author       = {{Ekström, Magnus and Ahmadi, Zainab and Bornefalk-Hermansson, Anna and Abernethy, Amy and Currow, David}},
  issn         = {{1469-493X}},
  language     = {{eng}},
  month        = {{11}},
  number       = {{11}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Cochrane Database of Systematic Reviews}},
  title        = {{Oxygen for breathlessness in patients with chronic obstructive pulmonary disease who do not qualify for home oxygen therapy}},
  url          = {{http://dx.doi.org/10.1002/14651858.CD006429.pub3}},
  doi          = {{10.1002/14651858.CD006429.pub3}},
  volume       = {{2016}},
  year         = {{2016}},
}