Advanced

Family History and Probability of Prostate Cancer, Differentiated by Risk Category : A Nationwide Population-Based Study

Bratt, Ola LU ; Drevin, Linda; Akre, Olof; Garmo, Hans and Stattin, Pär (2016) In Journal of the National Cancer Institute 108(10).
Abstract

Background: Familial prostate cancer risk estimates are inflated by clinically insignificant low-risk cancer, diagnosed after prostate-specific antigen testing. We provide age-specific probabilities of non-low- and high-risk prostate cancer. Methods: Fifty-one thousand, eight hundred ninety-seven brothers of 32 807 men with prostate cancer were identified in Prostate Cancer data Base Sweden (PCBaSe). Nelson-Aalen estimates with 95% confidence intervals (CIs) were calculated for cumulative, family history-stratified probabilities of any, non-low- (any of Gleason score ≥ 7, prostate-specific antigen [PSA] ≥ 10 ng/mL, T3-4, N1, and/or M1) and high-risk prostate cancer (Gleason score ≥ 8 and/or T3-4 and/or PSA ≥ 20 ng/mL and/or N1 and/or... (More)

Background: Familial prostate cancer risk estimates are inflated by clinically insignificant low-risk cancer, diagnosed after prostate-specific antigen testing. We provide age-specific probabilities of non-low- and high-risk prostate cancer. Methods: Fifty-one thousand, eight hundred ninety-seven brothers of 32 807 men with prostate cancer were identified in Prostate Cancer data Base Sweden (PCBaSe). Nelson-Aalen estimates with 95% confidence intervals (CIs) were calculated for cumulative, family history-stratified probabilities of any, non-low- (any of Gleason score ≥ 7, prostate-specific antigen [PSA] ≥ 10 ng/mL, T3-4, N1, and/or M1) and high-risk prostate cancer (Gleason score ≥ 8 and/or T3-4 and/or PSA ≥ 20 ng/mL and/or N1 and/or M1). Results: The population probability of any prostate cancer was 4.8% (95% CI = 4.8% to 4.9%) at age 65 years and 12.9% (95% CI = 12.8% to 12.9%) at age 75 years, of non-low-risk prostate cancer 2.8% (95% CI = 2.7% to 2.8%) at age 65 years and 8.9% (95% CI = 8.8% to 8.9%) at age 75 years, and of high-risk prostate cancer 1.4% (95% CI = 1.3% to 1.4%) at age 65 years and 5.2% (95% CI = 5.1% to 5.2%) at age 75 years. For men with one affected brother, probabilities of any prostate cancer were 14.9% (95% CI = 14.1% to 15.8%) at age 65 years and 30.3% (95% CI = 29.3% to 31.3%) at age 75 years, of non-low-risk prostate cancer 7.3% (95% CI = 6.7% to 7.9%) at age 65 years and 18.8% (95% CI = 17.9% to 19.6%) at age 75 years, and of high-risk prostate cancer 3.0% (95% CI = 2.6% to 3.4%) at age 65 years and 8.9% (95% CI = 8.2% to 9.5%) at age 75 years. Probabilities were higher for men with a stronger family history. For example, men with two affected brothers had a 13.6% (95% CI = 9.9% to 17.6 %) probability of high-risk cancer at age 75 years. Conclusions: The age-specific probabilities of non-low- and high-risk cancer presented here are more informative than relative risks of any prostate cancer and more suitable to use for counseling men with a family history of prostate cancer.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of the National Cancer Institute
volume
108
issue
10
publisher
Oxford University Press
external identifiers
  • scopus:84994275804
  • wos:000386947400005
ISSN
0027-8874
DOI
10.1093/jnci/djw110
language
English
LU publication?
yes
id
b4c9076c-a19f-462d-9a64-0a1991a87076
date added to LUP
2016-12-07 14:31:26
date last changed
2017-10-22 05:23:22
@article{b4c9076c-a19f-462d-9a64-0a1991a87076,
  abstract     = {<p>Background: Familial prostate cancer risk estimates are inflated by clinically insignificant low-risk cancer, diagnosed after prostate-specific antigen testing. We provide age-specific probabilities of non-low- and high-risk prostate cancer. Methods: Fifty-one thousand, eight hundred ninety-seven brothers of 32 807 men with prostate cancer were identified in Prostate Cancer data Base Sweden (PCBaSe). Nelson-Aalen estimates with 95% confidence intervals (CIs) were calculated for cumulative, family history-stratified probabilities of any, non-low- (any of Gleason score ≥ 7, prostate-specific antigen [PSA] ≥ 10 ng/mL, T3-4, N1, and/or M1) and high-risk prostate cancer (Gleason score ≥ 8 and/or T3-4 and/or PSA ≥ 20 ng/mL and/or N1 and/or M1). Results: The population probability of any prostate cancer was 4.8% (95% CI = 4.8% to 4.9%) at age 65 years and 12.9% (95% CI = 12.8% to 12.9%) at age 75 years, of non-low-risk prostate cancer 2.8% (95% CI = 2.7% to 2.8%) at age 65 years and 8.9% (95% CI = 8.8% to 8.9%) at age 75 years, and of high-risk prostate cancer 1.4% (95% CI = 1.3% to 1.4%) at age 65 years and 5.2% (95% CI = 5.1% to 5.2%) at age 75 years. For men with one affected brother, probabilities of any prostate cancer were 14.9% (95% CI = 14.1% to 15.8%) at age 65 years and 30.3% (95% CI = 29.3% to 31.3%) at age 75 years, of non-low-risk prostate cancer 7.3% (95% CI = 6.7% to 7.9%) at age 65 years and 18.8% (95% CI = 17.9% to 19.6%) at age 75 years, and of high-risk prostate cancer 3.0% (95% CI = 2.6% to 3.4%) at age 65 years and 8.9% (95% CI = 8.2% to 9.5%) at age 75 years. Probabilities were higher for men with a stronger family history. For example, men with two affected brothers had a 13.6% (95% CI = 9.9% to 17.6 %) probability of high-risk cancer at age 75 years. Conclusions: The age-specific probabilities of non-low- and high-risk cancer presented here are more informative than relative risks of any prostate cancer and more suitable to use for counseling men with a family history of prostate cancer.</p>},
  articleno    = {djw110},
  author       = {Bratt, Ola and Drevin, Linda and Akre, Olof and Garmo, Hans and Stattin, Pär},
  issn         = {0027-8874},
  language     = {eng},
  month        = {10},
  number       = {10},
  publisher    = {Oxford University Press},
  series       = {Journal of the National Cancer Institute},
  title        = {Family History and Probability of Prostate Cancer, Differentiated by Risk Category : A Nationwide Population-Based Study},
  url          = {http://dx.doi.org/10.1093/jnci/djw110},
  volume       = {108},
  year         = {2016},
}