Toward more realistic projections of soil carbon dynamics by Earth system models
(2016) In Global Biogeochemical Cycles 30(1). p.40-56- Abstract
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from... (More)
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
(Less)
- author
- organization
- publishing date
- 2016-01-01
- type
- Contribution to journal
- publication status
- published
- keywords
- CMIP5, Earth system models, realistic projections, recommendations, soil carbon dynamics
- in
- Global Biogeochemical Cycles
- volume
- 30
- issue
- 1
- pages
- 17 pages
- publisher
- Wiley-Blackwell
- external identifiers
-
- scopus:84956641600
- ISSN
- 0886-6236
- DOI
- 10.1002/2015GB005239
- language
- English
- LU publication?
- yes
- id
- b617d016-bd87-4afe-b431-c5787219e8b4
- alternative location
- https://cloudfront.escholarship.org/dist/prd/content/qt1pw7g2r2/qt1pw7g2r2.pdf?t=o6zh3a
- date added to LUP
- 2018-06-01 16:51:35
- date last changed
- 2025-03-19 21:21:34
@article{b617d016-bd87-4afe-b431-c5787219e8b4, abstract = {{<p>Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.</p>}}, author = {{Luo, Yiqi and Ahlström, Anders and Allison, Steven D. and Batjes, Niels H. and Brovkin, Victor and Carvalhais, Nuno and Chappell, Adrian and Ciais, Philippe and Davidson, Eric A. and Finzi, Adien and Georgiou, Katerina and Guenet, Bertrand and Hararuk, Oleksandra and Harden, Jennifer W. and He, Yujie and Hopkins, Francesca and Jiang, Lifen and Koven, Charlie and Jackson, Robert B. and Jones, Chris D. and Lara, Mark J. and Liang, Junyi and McGuire, A. David and Parton, William and Peng, Changhui and Randerson, James T. and Salazar, Alejandro and Sierra, Carlos A. and Smith, Matthew J. and Tian, Hanqin and Todd-Brown, Katherine E.O. and Torn, Margaret and Van Groenigen, Kees Jan and Wang, Ying Ping and West, Tristram O. and Wei, Yaxing and Wieder, William R. and Xia, Jianyang and Xu, Xia and Xu, Xiaofeng and Zhou, Tao}}, issn = {{0886-6236}}, keywords = {{CMIP5; Earth system models; realistic projections; recommendations; soil carbon dynamics}}, language = {{eng}}, month = {{01}}, number = {{1}}, pages = {{40--56}}, publisher = {{Wiley-Blackwell}}, series = {{Global Biogeochemical Cycles}}, title = {{Toward more realistic projections of soil carbon dynamics by Earth system models}}, url = {{http://dx.doi.org/10.1002/2015GB005239}}, doi = {{10.1002/2015GB005239}}, volume = {{30}}, year = {{2016}}, }