THE WILLMORE ENERGY AND THE MAGNITUDE OF EUCLIDEAN DOMAINS
(2023) In Proceedings of the American Mathematical Society 151(2). p.897-906- Abstract
We study the geometric significance of Leinster’s notion of magnitude for a compact metric space. For a smooth, compact domain X in an odd-dimensional Euclidean space, we show that the asymptotic expansion of the function MX(R) = Mag(R·X) at R = ∞ determines the Willmore energy of the boundary ∂X. This disproves the Leinster-Willerton conjecture for a compact convex body in odd dimensions.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/b757ed77-1081-464b-85e7-c14b01c4e31b
- author
- Gimperlein, Heiko
and Goffeng, Magnus
LU
- organization
- publishing date
- 2023-02-01
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Proceedings of the American Mathematical Society
- volume
- 151
- issue
- 2
- pages
- 10 pages
- publisher
- American Mathematical Society (AMS)
- external identifiers
-
- scopus:85144725478
- ISSN
- 0002-9939
- DOI
- 10.1090/proc/16163
- language
- English
- LU publication?
- yes
- id
- b757ed77-1081-464b-85e7-c14b01c4e31b
- date added to LUP
- 2023-02-02 10:28:59
- date last changed
- 2025-10-14 10:50:44
@article{b757ed77-1081-464b-85e7-c14b01c4e31b,
abstract = {{<p>We study the geometric significance of Leinster’s notion of magnitude for a compact metric space. For a smooth, compact domain X in an odd-dimensional Euclidean space, we show that the asymptotic expansion of the function M<sub>X</sub>(R) = Mag(R·X) at R = ∞ determines the Willmore energy of the boundary ∂X. This disproves the Leinster-Willerton conjecture for a compact convex body in odd dimensions.</p>}},
author = {{Gimperlein, Heiko and Goffeng, Magnus}},
issn = {{0002-9939}},
language = {{eng}},
month = {{02}},
number = {{2}},
pages = {{897--906}},
publisher = {{American Mathematical Society (AMS)}},
series = {{Proceedings of the American Mathematical Society}},
title = {{THE WILLMORE ENERGY AND THE MAGNITUDE OF EUCLIDEAN DOMAINS}},
url = {{http://dx.doi.org/10.1090/proc/16163}},
doi = {{10.1090/proc/16163}},
volume = {{151}},
year = {{2023}},
}