Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Model- based estimation of optimal temperature profile during simultaneous saccharification and fermentation of Arundo donax.

Mutturi, Sarma LU and Lidén, Gunnar LU (2013) In Biotechnology and Bioengineering
Abstract
A kinetic model fitted to enzymatic hydrolysis of Arundo donax was coupled to a fermentation kinetic model derived from simultaneous saccharification and fermentation (SSF) experiments at different temperatures for the determination of optimal temperature profile (between 36-45 (°) C) using iterative dynamic programming (IDP). A sensitivity analysis of enzyme kinetic model not only facilitated model reduction in terms of number of parameters, but also enabled artifacts from parameter estimations to be identified. In separate fermentation experiments conducted at 35, 40, 45 and 50 (°) C using ∼40 g/L background glucose in fibre-free liquid fraction of arundo it was found that growth was possible at 40 (°) C, but the fermentation capacity... (More)
A kinetic model fitted to enzymatic hydrolysis of Arundo donax was coupled to a fermentation kinetic model derived from simultaneous saccharification and fermentation (SSF) experiments at different temperatures for the determination of optimal temperature profile (between 36-45 (°) C) using iterative dynamic programming (IDP). A sensitivity analysis of enzyme kinetic model not only facilitated model reduction in terms of number of parameters, but also enabled artifacts from parameter estimations to be identified. In separate fermentation experiments conducted at 35, 40, 45 and 50 (°) C using ∼40 g/L background glucose in fibre-free liquid fraction of arundo it was found that growth was possible at 40 (°) C, but the fermentation capacity was completely lost after 12 h at 50 (°) C. The final ethanol concentration obtained after 120 h in isothermal SSF experiments at 36, 39, 42 and 45 (°) C were 10.6, 13.7, 14.2 and 12.5 g/L, respectively. The predicted optimal temperature profile in SSF determined by iterative dynamic programming was (i) gradual decrease from 40 (°) C to 37.5 (°) C until 16 h, (ii) a linear increase upto 45 (°) C until 80 h, and (iii) gradual decrease by 1 (°) C until 120 h. Experimental results were in good agreement with the model predictions. The ethanol concentration after 72 h obtained in the optimal case was 13.6 g/L in comparison to 9.1, 12.2, 12.6 and 11.6 g/L for ISO-SSF at 36, 39, 42 and 45 (°) C, respectively. Moreover this value was 95.8% of the final value achieved at the end of 120 h, indicating that the process times could be significantly shortened by using non-isothermal SSF. Biotechnol. Bioeng. © 2013 Wiley Periodicals, Inc. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Biotechnology and Bioengineering
publisher
John Wiley & Sons Inc.
external identifiers
  • pmid:24284986
  • wos:000333561600003
  • scopus:84897104229
  • pmid:24284986
ISSN
1097-0290
DOI
10.1002/bit.25165
language
English
LU publication?
yes
id
b8ab0ac0-2bc5-443d-b735-6a5238d022a0 (old id 4178845)
date added to LUP
2016-04-01 10:47:42
date last changed
2023-11-24 18:20:57
@article{b8ab0ac0-2bc5-443d-b735-6a5238d022a0,
  abstract     = {{A kinetic model fitted to enzymatic hydrolysis of Arundo donax was coupled to a fermentation kinetic model derived from simultaneous saccharification and fermentation (SSF) experiments at different temperatures for the determination of optimal temperature profile (between 36-45 (°) C) using iterative dynamic programming (IDP). A sensitivity analysis of enzyme kinetic model not only facilitated model reduction in terms of number of parameters, but also enabled artifacts from parameter estimations to be identified. In separate fermentation experiments conducted at 35, 40, 45 and 50 (°) C using ∼40 g/L background glucose in fibre-free liquid fraction of arundo it was found that growth was possible at 40 (°) C, but the fermentation capacity was completely lost after 12 h at 50 (°) C. The final ethanol concentration obtained after 120 h in isothermal SSF experiments at 36, 39, 42 and 45 (°) C were 10.6, 13.7, 14.2 and 12.5 g/L, respectively. The predicted optimal temperature profile in SSF determined by iterative dynamic programming was (i) gradual decrease from 40 (°) C to 37.5 (°) C until 16 h, (ii) a linear increase upto 45 (°) C until 80 h, and (iii) gradual decrease by 1 (°) C until 120 h. Experimental results were in good agreement with the model predictions. The ethanol concentration after 72 h obtained in the optimal case was 13.6 g/L in comparison to 9.1, 12.2, 12.6 and 11.6 g/L for ISO-SSF at 36, 39, 42 and 45 (°) C, respectively. Moreover this value was 95.8% of the final value achieved at the end of 120 h, indicating that the process times could be significantly shortened by using non-isothermal SSF. Biotechnol. Bioeng. © 2013 Wiley Periodicals, Inc.}},
  author       = {{Mutturi, Sarma and Lidén, Gunnar}},
  issn         = {{1097-0290}},
  language     = {{eng}},
  month        = {{11}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Biotechnology and Bioengineering}},
  title        = {{Model- based estimation of optimal temperature profile during simultaneous saccharification and fermentation of Arundo donax.}},
  url          = {{http://dx.doi.org/10.1002/bit.25165}},
  doi          = {{10.1002/bit.25165}},
  year         = {{2013}},
}