Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Electronic properties of interfaces and defects from many-body perturbation theory : Recent developments and applications

Giantomassi, M. ; Stankovski, M. LU ; Shaltaf, R. ; Grüning, M. ; Bruneval, F. ; Rinke, P. and Rignanese, G. M. (2011) In Physica Status Solidi (B) Basic Research 248(2). p.275-289
Abstract

We review some recent developments in many-body perturbation theory (MBPT) calculations that have enabled the study of interfaces and defects. Starting from the theoretical basis of MBPT, Hedin's equations are presented, leading to the GW and GWΓ approximations. We introduce the perturbative approach, that is the one most commonly used for obtaining quasiparticle (QP) energies. The practical strategy presented for dealing with the frequency dependence of the self-energy operator is based on either plasmon-pole models (PPM) or the contour deformation technique, with the latter being more accurate. We also discuss the extrapolar method for reducing the number of unoccupied states which need to be included explicitly in the calculations.... (More)

We review some recent developments in many-body perturbation theory (MBPT) calculations that have enabled the study of interfaces and defects. Starting from the theoretical basis of MBPT, Hedin's equations are presented, leading to the GW and GWΓ approximations. We introduce the perturbative approach, that is the one most commonly used for obtaining quasiparticle (QP) energies. The practical strategy presented for dealing with the frequency dependence of the self-energy operator is based on either plasmon-pole models (PPM) or the contour deformation technique, with the latter being more accurate. We also discuss the extrapolar method for reducing the number of unoccupied states which need to be included explicitly in the calculations. The use of the PAW method in the framework of MBPT is also described. Finally, results which have been obtained using MBPT for band offsets at interfaces and for defects are presented, with emphasis on the main difficulties and caveats. Schematic representation of the QP corrections (marked with δ) to the band edges (Ev and Ec) and a defect level (Ed) for a Si/SiO2 interface (Si and O atoms are represented in blue and red, respectively, in the ball-and-stick model) with an oxygen vacancy leading to a Si-Si bond (the Si atoms involved in this bond are colored light blue).

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
keywords
Defect levels, Electronic structure calculations, Interfaces
in
Physica Status Solidi (B) Basic Research
volume
248
issue
2
pages
15 pages
publisher
John Wiley & Sons Inc.
external identifiers
  • scopus:78651313855
ISSN
0370-1972
DOI
10.1002/pssb.201046094
language
English
LU publication?
no
id
ba2e1a33-6607-46bb-a982-f578e5cc4fe6
date added to LUP
2019-03-06 15:17:37
date last changed
2022-03-25 08:38:01
@article{ba2e1a33-6607-46bb-a982-f578e5cc4fe6,
  abstract     = {{<p>We review some recent developments in many-body perturbation theory (MBPT) calculations that have enabled the study of interfaces and defects. Starting from the theoretical basis of MBPT, Hedin's equations are presented, leading to the GW and GWΓ approximations. We introduce the perturbative approach, that is the one most commonly used for obtaining quasiparticle (QP) energies. The practical strategy presented for dealing with the frequency dependence of the self-energy operator is based on either plasmon-pole models (PPM) or the contour deformation technique, with the latter being more accurate. We also discuss the extrapolar method for reducing the number of unoccupied states which need to be included explicitly in the calculations. The use of the PAW method in the framework of MBPT is also described. Finally, results which have been obtained using MBPT for band offsets at interfaces and for defects are presented, with emphasis on the main difficulties and caveats. Schematic representation of the QP corrections (marked with δ) to the band edges (E<sub>v</sub> and E<sub>c</sub>) and a defect level (E<sub>d</sub>) for a Si/SiO<sub>2</sub> interface (Si and O atoms are represented in blue and red, respectively, in the ball-and-stick model) with an oxygen vacancy leading to a Si-Si bond (the Si atoms involved in this bond are colored light blue).</p>}},
  author       = {{Giantomassi, M. and Stankovski, M. and Shaltaf, R. and Grüning, M. and Bruneval, F. and Rinke, P. and Rignanese, G. M.}},
  issn         = {{0370-1972}},
  keywords     = {{Defect levels; Electronic structure calculations; Interfaces}},
  language     = {{eng}},
  month        = {{02}},
  number       = {{2}},
  pages        = {{275--289}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Physica Status Solidi (B) Basic Research}},
  title        = {{Electronic properties of interfaces and defects from many-body perturbation theory : Recent developments and applications}},
  url          = {{http://dx.doi.org/10.1002/pssb.201046094}},
  doi          = {{10.1002/pssb.201046094}},
  volume       = {{248}},
  year         = {{2011}},
}