Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Properties of Runge-Kutta-Summation-By-Parts methods

Linders, Viktor LU ; Nordström, Jan and Frankel, Steven H. (2020) In Journal of Computational Physics 419.
Abstract

We review and extend the list of stability and convergence properties satisfied by Runge-Kutta (RK) methods that are associated with Summation-By-Parts (SBP) operators, herein called RK-SBP methods. The analysis covers classical, generalized as well as upwind SBP operators. Previous work on the topic has relied predominantly on energy estimates. In contrast, we derive all results using a purely algebraic approach that rests on the well-established theory of RK methods. The purpose of this paper is to provide a bottom-up overview of stability and convergence results for linear and non-linear problems that relate to general RK-SBP methods. To this end, we focus on the RK viewpoint, since this perspective so far is largely unexplored. This... (More)

We review and extend the list of stability and convergence properties satisfied by Runge-Kutta (RK) methods that are associated with Summation-By-Parts (SBP) operators, herein called RK-SBP methods. The analysis covers classical, generalized as well as upwind SBP operators. Previous work on the topic has relied predominantly on energy estimates. In contrast, we derive all results using a purely algebraic approach that rests on the well-established theory of RK methods. The purpose of this paper is to provide a bottom-up overview of stability and convergence results for linear and non-linear problems that relate to general RK-SBP methods. To this end, we focus on the RK viewpoint, since this perspective so far is largely unexplored. This approach allows us to derive all results as simple consequences of the properties of SBP methods combined with well-known results from RK theory. In this way, new proofs of known results such as A-, L- and B-stability are given. Additionally, we establish previously unreported results such as strong S-stability, dissipative stability and stiff accuracy of certain RK-SBP methods. Further, it is shown that a subset of methods are B-convergent for strictly contractive non-linear problems and convergent for non-linear problems that are both contractive and dissipative.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
B-convergence, Dissipative stability, Runge-Kutta methods, S-stability, SBP in time, Stiff accuracy
in
Journal of Computational Physics
volume
419
article number
109684
publisher
Elsevier
external identifiers
  • scopus:85087591463
ISSN
0021-9991
DOI
10.1016/j.jcp.2020.109684
language
English
LU publication?
yes
id
bb4ff6c9-11cd-4cee-91d0-ab8c2bdd6577
date added to LUP
2021-01-13 23:48:49
date last changed
2022-04-19 03:43:46
@article{bb4ff6c9-11cd-4cee-91d0-ab8c2bdd6577,
  abstract     = {{<p>We review and extend the list of stability and convergence properties satisfied by Runge-Kutta (RK) methods that are associated with Summation-By-Parts (SBP) operators, herein called RK-SBP methods. The analysis covers classical, generalized as well as upwind SBP operators. Previous work on the topic has relied predominantly on energy estimates. In contrast, we derive all results using a purely algebraic approach that rests on the well-established theory of RK methods. The purpose of this paper is to provide a bottom-up overview of stability and convergence results for linear and non-linear problems that relate to general RK-SBP methods. To this end, we focus on the RK viewpoint, since this perspective so far is largely unexplored. This approach allows us to derive all results as simple consequences of the properties of SBP methods combined with well-known results from RK theory. In this way, new proofs of known results such as A-, L- and B-stability are given. Additionally, we establish previously unreported results such as strong S-stability, dissipative stability and stiff accuracy of certain RK-SBP methods. Further, it is shown that a subset of methods are B-convergent for strictly contractive non-linear problems and convergent for non-linear problems that are both contractive and dissipative.</p>}},
  author       = {{Linders, Viktor and Nordström, Jan and Frankel, Steven H.}},
  issn         = {{0021-9991}},
  keywords     = {{B-convergence; Dissipative stability; Runge-Kutta methods; S-stability; SBP in time; Stiff accuracy}},
  language     = {{eng}},
  month        = {{10}},
  publisher    = {{Elsevier}},
  series       = {{Journal of Computational Physics}},
  title        = {{Properties of Runge-Kutta-Summation-By-Parts methods}},
  url          = {{http://dx.doi.org/10.1016/j.jcp.2020.109684}},
  doi          = {{10.1016/j.jcp.2020.109684}},
  volume       = {{419}},
  year         = {{2020}},
}