Advanced

Species-Dependent Effects of the Urban Environment on Fatty Acid Composition and Oxidative Stress in Birds

Isaksson, Caroline LU ; Andersson, Martin N LU ; Nord, Andreas LU ; von Post, Maria LU and Wang, Hong-Lei LU (2017) In Frontiers in Ecology and Evolution 5.
Abstract (Swedish)
Ecological impacts of urbanization include the loss of biodiversity and changes in species composition and population densities. However, how the urban environment affects fundamental physiological parameters is largely unknown. Here, we investigated physiological components related to health and nutrition, namely, plasma fatty acids (FA) and lipid peroxidation at inter-habitat and interspecific levels. Specifically, we compared four passerine bird species—the great tit (Parus major), the blue tit (Cyanistes caeruleus), the house sparrow (Passer domesticus), and the tree sparrow (P. montanus)—from urban and rural environments. Significant interactions between species and habitat were revealed for the majority of the FAs. Interestingly, the... (More)
Ecological impacts of urbanization include the loss of biodiversity and changes in species composition and population densities. However, how the urban environment affects fundamental physiological parameters is largely unknown. Here, we investigated physiological components related to health and nutrition, namely, plasma fatty acids (FA) and lipid peroxidation at inter-habitat and interspecific levels. Specifically, we compared four passerine bird species—the great tit (Parus major), the blue tit (Cyanistes caeruleus), the house sparrow (Passer domesticus), and the tree sparrow (P. montanus)—from urban and rural environments. Significant interactions between species and habitat were revealed for the majority of the FAs. Interestingly, the observed inter-habitat variation in FAs was frequently in opposite directions when comparing species from the two families (tits, Paridae; sparrows, Passeridae). These patterns suggest that sparrows and tits feed on different food sources, or modulate their FA metabolism differently, across the urban-rural gradient. By using canonical discriminant analyses (CDA), we further demonstrated species-specific signals in FA composition, with misclassification of species being <1% within habitats and <7% between habitats. Finally, the urban-rural FA differences between species and families were manifested in two indices of health. Firstly, urban blue tits had a higher total ω-6/ω-3 polyunsaturated FA ratio than rural conspecifics, which is believed to increase inflammatory responses. Secondly, urban sparrows of both species showed higher lipid peroxidation indices (indicating a higher susceptibility to lipid peroxidation if exposed to pro-oxidants), and consequently, a higher level of lipid peroxidation compared to their rural conspecifics. Collectively, the species- and habitat-specific differences in plasma FA composition, which are linked to nutrition and metabolism, suggest that the urban environment affect tits and sparrows primarily via two different pathways—inflammation and oxidative stress, respectively,—with potential consequences for the health of urban populations. (Less)
Abstract
Ecological impacts of urbanization include the loss of biodiversity and changes in species composition and population densities. However, how the urban environment affects fundamental physiological parameters is largely unknown. Here, we investigated physiological components related to health and nutrition, namely, plasma fatty acids (FA) and lipid peroxidation at inter-habitat and interspecific levels. Specifically, we compared four passerine bird species—the great tit (Parus major), the blue tit (Cyanistes caeruleus), the house sparrow (Passer domesticus), and the tree sparrow (P. montanus)—from urban and rural environments. Significant interactions between species and habitat were revealed for the majority of the FAs. Interestingly, the... (More)
Ecological impacts of urbanization include the loss of biodiversity and changes in species composition and population densities. However, how the urban environment affects fundamental physiological parameters is largely unknown. Here, we investigated physiological components related to health and nutrition, namely, plasma fatty acids (FA) and lipid peroxidation at inter-habitat and interspecific levels. Specifically, we compared four passerine bird species—the great tit (Parus major), the blue tit (Cyanistes caeruleus), the house sparrow (Passer domesticus), and the tree sparrow (P. montanus)—from urban and rural environments. Significant interactions between species and habitat were revealed for the majority of the FAs. Interestingly, the observed inter-habitat variation in FAs was frequently in opposite directions when comparing species from the two families (tits, Paridae; sparrows, Passeridae). These patterns suggest that sparrows and tits feed on different food sources, or modulate their FA metabolism differently, across the urban-rural gradient. By using canonical discriminant analyses (CDA), we further demonstrated species-specific signals in FA composition, with misclassification of species being <1% within habitats and <7% between habitats. Finally, the urban-rural FA differences between species and families were manifested in two indices of health. Firstly, urban blue tits had a higher total ω-6/ω-3 polyunsaturated FA ratio than rural conspecifics, which is believed to increase inflammatory responses. Secondly, urban sparrows of both species showed higher lipid peroxidation indices (indicating a higher susceptibility to lipid peroxidation if exposed to pro-oxidants), and consequently, a higher level of lipid peroxidation compared to their rural conspecifics. Collectively, the species- and habitat-specific differences in plasma FA composition, which are linked to nutrition and metabolism, suggest that the urban environment affect tits and sparrows primarily via two different pathways—inflammation and oxidative stress, respectively,—with potential consequences for the health of urban populations. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
oxidative stress, urban ecology, Urbanization, fatty acid, ornithology, diet, lipid peroxidation, omega-3, omega-6, Paridae,, Passeridae, polyunsaturated fatty acid, urbanization, Parus major, Cyanistes caeruleus, Passer domesticus, Passer montanus
in
Frontiers in Ecology and Evolution
volume
5
pages
13 pages
publisher
Frontiers
external identifiers
  • scopus:85029221993
ISSN
2296-701X
DOI
10.3389/fevo.2017.00044
language
English
LU publication?
yes
id
bc56ed64-cd8c-4640-ac01-afde99ff14e0
alternative location
http://journal.frontiersin.org/article/10.3389/fevo.2017.00044/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Ecology_and_Evolution&id=260764
date added to LUP
2017-05-12 17:15:56
date last changed
2018-05-29 12:28:29
@article{bc56ed64-cd8c-4640-ac01-afde99ff14e0,
  abstract     = {Ecological impacts of urbanization include the loss of biodiversity and changes in species composition and population densities. However, how the urban environment affects fundamental physiological parameters is largely unknown. Here, we investigated physiological components related to health and nutrition, namely, plasma fatty acids (FA) and lipid peroxidation at inter-habitat and interspecific levels. Specifically, we compared four passerine bird species—the great tit (Parus major), the blue tit (Cyanistes caeruleus), the house sparrow (Passer domesticus), and the tree sparrow (P. montanus)—from urban and rural environments. Significant interactions between species and habitat were revealed for the majority of the FAs. Interestingly, the observed inter-habitat variation in FAs was frequently in opposite directions when comparing species from the two families (tits, Paridae; sparrows, Passeridae). These patterns suggest that sparrows and tits feed on different food sources, or modulate their FA metabolism differently, across the urban-rural gradient. By using canonical discriminant analyses (CDA), we further demonstrated species-specific signals in FA composition, with misclassification of species being &lt;1% within habitats and &lt;7% between habitats. Finally, the urban-rural FA differences between species and families were manifested in two indices of health. Firstly, urban blue tits had a higher total ω-6/ω-3 polyunsaturated FA ratio than rural conspecifics, which is believed to increase inflammatory responses. Secondly, urban sparrows of both species showed higher lipid peroxidation indices (indicating a higher susceptibility to lipid peroxidation if exposed to pro-oxidants), and consequently, a higher level of lipid peroxidation compared to their rural conspecifics. Collectively, the species- and habitat-specific differences in plasma FA composition, which are linked to nutrition and metabolism, suggest that the urban environment affect tits and sparrows primarily via two different pathways—inflammation and oxidative stress, respectively,—with potential consequences for the health of urban populations.},
  articleno    = {44},
  author       = {Isaksson, Caroline and Andersson, Martin N and Nord, Andreas and von Post, Maria and Wang, Hong-Lei},
  issn         = {2296-701X},
  keyword      = {oxidative stress,urban ecology,Urbanization,fatty acid,ornithology,diet,lipid peroxidation,omega-3,omega-6,Paridae,,Passeridae,polyunsaturated fatty acid,urbanization,Parus major,Cyanistes caeruleus,Passer domesticus,Passer montanus},
  language     = {eng},
  pages        = {13},
  publisher    = {Frontiers},
  series       = {Frontiers in Ecology and Evolution},
  title        = {Species-Dependent Effects of the Urban Environment on Fatty Acid Composition and Oxidative Stress in Birds},
  url          = {http://dx.doi.org/10.3389/fevo.2017.00044},
  volume       = {5},
  year         = {2017},
}