Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Protective Effects of Halite to Vacuum and Vacuum-Ultraviolet Radiation : A Potential Scenario during a Young Sun Superflare

Abrevaya, Ximena C. ; Galante, Douglas ; Tribelli, Paula M. ; Oppezzo, Oscar J. ; Nobrega, Felipe ; Araujo, Gabriel G. ; Rodrigues, Fabio ; Odert, Petra ; Leitzinger, Martin and Ricardi, Martiniano M. , et al. (2023) In Astrobiology 23(3). p.245-268
Abstract

Halite (NaCl mineral) has exhibited the potential to preserve microorganisms for millions of years on Earth. This mineral was also identified on Mars and in meteorites. In this study, we investigated the potential of halite crystals to protect microbial life-forms on the surface of an airless body (e.g., meteorite), for instance, during a lithopanspermia process (interplanetary travel step) in the early Solar System. To investigate the effect of the radiation of the young Sun on microorganisms, we performed extensive simulation experiments by employing a synchrotron facility. We focused on two exposure conditions: vacuum (low Earth orbit, 10-4 Pa) and vacuum-ultraviolet (VUV) radiation (range 57.6-124 nm, flux 7.14 W/m2), with the... (More)

Halite (NaCl mineral) has exhibited the potential to preserve microorganisms for millions of years on Earth. This mineral was also identified on Mars and in meteorites. In this study, we investigated the potential of halite crystals to protect microbial life-forms on the surface of an airless body (e.g., meteorite), for instance, during a lithopanspermia process (interplanetary travel step) in the early Solar System. To investigate the effect of the radiation of the young Sun on microorganisms, we performed extensive simulation experiments by employing a synchrotron facility. We focused on two exposure conditions: vacuum (low Earth orbit, 10-4 Pa) and vacuum-ultraviolet (VUV) radiation (range 57.6-124 nm, flux 7.14 W/m2), with the latter representing an extreme scenario with high VUV fluxes comparable to the amount of radiation of a stellar superflare from the young Sun. The stellar VUV parameters were estimated by using the very well-studied solar analog of the young Sun, κ1 Cet. To evaluate the protective effects of halite, we entrapped a halophilic archaeon (Haloferax volcanii) and a non-halophilic bacterium (Deinococcus radiodurans) in laboratory-grown halite. Control groups were cells entrapped in salt crystals (mixtures of different salts and NaCl) and non-trapped (naked) cells, respectively. All groups were exposed either to vacuum alone or to vacuum plus VUV. Our results demonstrate that halite can serve as protection against vacuum and VUV radiation, regardless of the type of microorganism. In addition, we found that the protection is higher than provided by crystals obtained from mixtures of salts. This extends the protective effects of halite documented in previous studies and reinforces the possibility to consider the crystals of this mineral as potential preservation structures in airless bodies or as vehicles for the interplanetary transfer of microorganisms.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Astrobiology, Lithopanspermia, Meteorites, Microorganisms, Origin of life, VUV
in
Astrobiology
volume
23
issue
3
pages
24 pages
publisher
Mary Ann Liebert, Inc.
external identifiers
  • pmid:36577046
  • scopus:85149427666
ISSN
1531-1074
DOI
10.1089/ast.2022.0016
language
English
LU publication?
yes
additional info
Publisher Copyright: © Copyright 2023, Mary Ann Liebert, Inc., publishers 2023.
id
bce27d27-2d11-485b-85a3-bf59a731aa89
date added to LUP
2024-01-12 15:05:38
date last changed
2024-04-27 10:27:05
@article{bce27d27-2d11-485b-85a3-bf59a731aa89,
  abstract     = {{<p>Halite (NaCl mineral) has exhibited the potential to preserve microorganisms for millions of years on Earth. This mineral was also identified on Mars and in meteorites. In this study, we investigated the potential of halite crystals to protect microbial life-forms on the surface of an airless body (e.g., meteorite), for instance, during a lithopanspermia process (interplanetary travel step) in the early Solar System. To investigate the effect of the radiation of the young Sun on microorganisms, we performed extensive simulation experiments by employing a synchrotron facility. We focused on two exposure conditions: vacuum (low Earth orbit, 10-4 Pa) and vacuum-ultraviolet (VUV) radiation (range 57.6-124 nm, flux 7.14 W/m2), with the latter representing an extreme scenario with high VUV fluxes comparable to the amount of radiation of a stellar superflare from the young Sun. The stellar VUV parameters were estimated by using the very well-studied solar analog of the young Sun, κ1 Cet. To evaluate the protective effects of halite, we entrapped a halophilic archaeon (Haloferax volcanii) and a non-halophilic bacterium (Deinococcus radiodurans) in laboratory-grown halite. Control groups were cells entrapped in salt crystals (mixtures of different salts and NaCl) and non-trapped (naked) cells, respectively. All groups were exposed either to vacuum alone or to vacuum plus VUV. Our results demonstrate that halite can serve as protection against vacuum and VUV radiation, regardless of the type of microorganism. In addition, we found that the protection is higher than provided by crystals obtained from mixtures of salts. This extends the protective effects of halite documented in previous studies and reinforces the possibility to consider the crystals of this mineral as potential preservation structures in airless bodies or as vehicles for the interplanetary transfer of microorganisms.</p>}},
  author       = {{Abrevaya, Ximena C. and Galante, Douglas and Tribelli, Paula M. and Oppezzo, Oscar J. and Nobrega, Felipe and Araujo, Gabriel G. and Rodrigues, Fabio and Odert, Petra and Leitzinger, Martin and Ricardi, Martiniano M. and Varela, Maria Eugenia and Gallo, Tamires and Sanz-Forcada, Jorge and Ribas, Ignasi and Porto De Mello, Gustavo F. and Rodler, Florian and Cerini, Maria Fernanda and Hanslmeier, Arnold and Horvath, Jorge E.}},
  issn         = {{1531-1074}},
  keywords     = {{Astrobiology; Lithopanspermia; Meteorites; Microorganisms; Origin of life; VUV}},
  language     = {{eng}},
  month        = {{03}},
  number       = {{3}},
  pages        = {{245--268}},
  publisher    = {{Mary Ann Liebert, Inc.}},
  series       = {{Astrobiology}},
  title        = {{Protective Effects of Halite to Vacuum and Vacuum-Ultraviolet Radiation : A Potential Scenario during a Young Sun Superflare}},
  url          = {{http://dx.doi.org/10.1089/ast.2022.0016}},
  doi          = {{10.1089/ast.2022.0016}},
  volume       = {{23}},
  year         = {{2023}},
}