Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids

Vo, Phuong ; Lu, Hongduo LU ; Ma, Ke ; Forsman, Jan LU and Woodward, Clifford E. (2019) In Journal of Chemical Theory and Computation 15(12). p.6944-6957
Abstract

We describe a new local grand canonical Monte Carlo method to treat fluids in pores in chemical equilibrium with a reference bulk. The method is applied to Lennard-Jones particles in pores of different geometry and is shown to be much more accurate and efficient than other techniques such as traditional grand canonical simulations or Widom's particle insertion method. It utilizes a penalty potential to create a gas phase, which is in equilibrium with a more dense liquid component in the pore. Grand canonical Monte Carlo moves are employed in the gas phase, and the system then maintains chemical equilibrium by "diffusion" of particles. This creates an interface, which means that the confined fluid needs to occupy a large enough volume so... (More)

We describe a new local grand canonical Monte Carlo method to treat fluids in pores in chemical equilibrium with a reference bulk. The method is applied to Lennard-Jones particles in pores of different geometry and is shown to be much more accurate and efficient than other techniques such as traditional grand canonical simulations or Widom's particle insertion method. It utilizes a penalty potential to create a gas phase, which is in equilibrium with a more dense liquid component in the pore. Grand canonical Monte Carlo moves are employed in the gas phase, and the system then maintains chemical equilibrium by "diffusion" of particles. This creates an interface, which means that the confined fluid needs to occupy a large enough volume so that this is not an issue. We also applied the method to confined charged fluids and show how it can be used to determine local electrostatic potentials in the confined fluid, which are properly referenced to the bulk. This precludes the need to determine the Donnan potential (which controls electrochemical equilibrium) explicitly. Prior approaches have used explicit bulk simulations to measure this potential difference, which are significantly costly from a computational point of view. One outcome of our analysis is that pores of finite cross-section create a potential difference with the bulk via a small but nonzero linear charge density, which diminishes as ∼1/ln(L), where L is the pore length.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Chemical Theory and Computation
volume
15
issue
12
pages
14 pages
publisher
The American Chemical Society (ACS)
external identifiers
  • pmid:31665596
  • scopus:85075697005
ISSN
1549-9618
DOI
10.1021/acs.jctc.9b00804
language
English
LU publication?
yes
id
bedca475-9784-48de-ad9f-5c73a18c9d50
date added to LUP
2019-12-16 14:01:01
date last changed
2024-04-17 01:28:57
@article{bedca475-9784-48de-ad9f-5c73a18c9d50,
  abstract     = {{<p>We describe a new local grand canonical Monte Carlo method to treat fluids in pores in chemical equilibrium with a reference bulk. The method is applied to Lennard-Jones particles in pores of different geometry and is shown to be much more accurate and efficient than other techniques such as traditional grand canonical simulations or Widom's particle insertion method. It utilizes a penalty potential to create a gas phase, which is in equilibrium with a more dense liquid component in the pore. Grand canonical Monte Carlo moves are employed in the gas phase, and the system then maintains chemical equilibrium by "diffusion" of particles. This creates an interface, which means that the confined fluid needs to occupy a large enough volume so that this is not an issue. We also applied the method to confined charged fluids and show how it can be used to determine local electrostatic potentials in the confined fluid, which are properly referenced to the bulk. This precludes the need to determine the Donnan potential (which controls electrochemical equilibrium) explicitly. Prior approaches have used explicit bulk simulations to measure this potential difference, which are significantly costly from a computational point of view. One outcome of our analysis is that pores of finite cross-section create a potential difference with the bulk via a small but nonzero linear charge density, which diminishes as ∼1/ln(L), where L is the pore length.</p>}},
  author       = {{Vo, Phuong and Lu, Hongduo and Ma, Ke and Forsman, Jan and Woodward, Clifford E.}},
  issn         = {{1549-9618}},
  language     = {{eng}},
  month        = {{12}},
  number       = {{12}},
  pages        = {{6944--6957}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Journal of Chemical Theory and Computation}},
  title        = {{Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids}},
  url          = {{http://dx.doi.org/10.1021/acs.jctc.9b00804}},
  doi          = {{10.1021/acs.jctc.9b00804}},
  volume       = {{15}},
  year         = {{2019}},
}