Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Progressive and efficient verification for digital signatures

Boschini, Cecilia ; Fiore, Dario and Pagnin, Elena LU orcid (2022) 20th International Conference on Applied Cryptography and Network Security, ACNS 2022 In Lecture Notes in Computer Science 13269. p.440-458
Abstract
Digital signatures are widely deployed to authenticate the source of incoming information, or to certify data integrity. Common signature verification procedures return a decision (accept/reject) only at the very end of the execution. If interrupted prematurely, however, the verification process cannot infer any meaningful information about the validity of the given signature. We notice that this limitation is due to the algorithm design solely, and it is not inherent to signature verification.

In this work, we provide a formal framework to handle interruptions during signature verification. In addition, we propose a generic way to devise alternative verification procedures that progressively build confidence on the final... (More)
Digital signatures are widely deployed to authenticate the source of incoming information, or to certify data integrity. Common signature verification procedures return a decision (accept/reject) only at the very end of the execution. If interrupted prematurely, however, the verification process cannot infer any meaningful information about the validity of the given signature. We notice that this limitation is due to the algorithm design solely, and it is not inherent to signature verification.

In this work, we provide a formal framework to handle interruptions during signature verification. In addition, we propose a generic way to devise alternative verification procedures that progressively build confidence on the final decision. Our transformation builds on a simple but powerful intuition and applies to a wide range of existing schemes considered to be post-quantum secure including the NIST finalist Rainbow.

While the primary motivation of progressive verification is to mitigate unexpected interruptions, we show that verifiers can leverage it in two innovative ways. First, progressive verification can be used to intentionally adjust the soundness of the verification process. Second, progressive verifications output by our transformation can be split into a computationally intensive offline set-up (run once) and an efficient online verification that is progressive. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
Applied Cryptography and Network Security : 20th International Conference, ACNS 2022, Rome, Italy, June 20–23, 2022, Proceedings - 20th International Conference, ACNS 2022, Rome, Italy, June 20–23, 2022, Proceedings
series title
Lecture Notes in Computer Science
volume
13269
pages
19 pages
publisher
Springer
conference name
20th International Conference on Applied Cryptography and Network Security, ACNS 2022
conference location
Rome, Italy
conference dates
2022-06-20 - 2022-06-23
external identifiers
  • scopus:85134307669
ISSN
0302-9743
1611-3349
ISBN
978-3-031-09233-6
978-3-031-09234-3
DOI
10.1007/978-3-031-09234-3_22
language
English
LU publication?
yes
id
bf53619c-67be-4a52-8394-11dd1bfc4524
date added to LUP
2022-07-07 13:55:45
date last changed
2024-06-09 14:28:56
@inproceedings{bf53619c-67be-4a52-8394-11dd1bfc4524,
  abstract     = {{Digital signatures are widely deployed to authenticate the source of incoming information, or to certify data integrity. Common signature verification procedures return a decision (accept/reject) only at the very end of the execution. If interrupted prematurely, however, the verification process cannot infer any meaningful information about the validity of the given signature. We notice that this limitation is due to the algorithm design solely, and it is not inherent to signature verification.<br/><br/>In this work, we provide a formal framework to handle interruptions during signature verification. In addition, we propose a generic way to devise alternative verification procedures that progressively build confidence on the final decision. Our transformation builds on a simple but powerful intuition and applies to a wide range of existing schemes considered to be post-quantum secure including the NIST finalist Rainbow.<br/><br/>While the primary motivation of progressive verification is to mitigate unexpected interruptions, we show that verifiers can leverage it in two innovative ways. First, progressive verification can be used to intentionally adjust the soundness of the verification process. Second, progressive verifications output by our transformation can be split into a computationally intensive offline set-up (run once) and an efficient online verification that is progressive.}},
  author       = {{Boschini, Cecilia and Fiore, Dario and Pagnin, Elena}},
  booktitle    = {{Applied Cryptography and Network Security : 20th International Conference, ACNS 2022, Rome, Italy, June 20–23, 2022, Proceedings}},
  isbn         = {{978-3-031-09233-6}},
  issn         = {{0302-9743}},
  language     = {{eng}},
  pages        = {{440--458}},
  publisher    = {{Springer}},
  series       = {{Lecture Notes in Computer Science}},
  title        = {{Progressive and efficient verification for digital signatures}},
  url          = {{http://dx.doi.org/10.1007/978-3-031-09234-3_22}},
  doi          = {{10.1007/978-3-031-09234-3_22}},
  volume       = {{13269}},
  year         = {{2022}},
}