Aspects of the Duality between Supersymmetric Yang-Mills Theory and String Theory
(2007)- Abstract
- This thesis deals with three topics related to the Ads/CFT correspondence.
In Paper I, solutions describing the geometry of fractional D1-branes of Type IIB string theory are presented.
The running coupling constant is computed on the gauge theory side.
Paper II uses the idea that the anomalous dimension of a gauge theory operator can be interpreted as an eigenvalue of a spin chain Hamiltonian. The general Leigh-Strassler deformation is rewritten in terms of a spin-one spin chain and the integrability properties of the corresponding Hamiltonian are studied.
In paper III a non-commutative multiplication law, a star product, is defined. From this star product the... (More) - This thesis deals with three topics related to the Ads/CFT correspondence.
In Paper I, solutions describing the geometry of fractional D1-branes of Type IIB string theory are presented.
The running coupling constant is computed on the gauge theory side.
Paper II uses the idea that the anomalous dimension of a gauge theory operator can be interpreted as an eigenvalue of a spin chain Hamiltonian. The general Leigh-Strassler deformation is rewritten in terms of a spin-one spin chain and the integrability properties of the corresponding Hamiltonian are studied.
In paper III a non-commutative multiplication law, a star product, is defined. From this star product the general Leigh-Strassler deformation is obtained, and it is shown that the deformation only results in prefactors to the amplitudes of the undeformed theory. (Less) - Abstract (Swedish)
- Popular Abstract in Swedish
Denna avhandling behandlar tre frågor med anknytning till Ads/CFT-korrespondensen.
I papper I presenteras lösningar som beskriver geometrin hos fraktionella D1-bran från Typ IIB strängteori.
Kopplingskonstantens energiberoende beräknas på gaugeteorisidan.
I papper II används idén att den anomala dimesionen för en gaugeteorioperator kan tolkas som ett egenvärde till Hamiltonoperatorn i en spinnkedja. Den allmänna Leigh-Strassler deformationen skrivs om i termer av en spinn-ett spinnkedja och integrabilitetsegenskaperna för motsvarande Hamiltonoperator studeras.
I papper III definieras en icke-kommutativ multiplikationslag,... (More) - Popular Abstract in Swedish
Denna avhandling behandlar tre frågor med anknytning till Ads/CFT-korrespondensen.
I papper I presenteras lösningar som beskriver geometrin hos fraktionella D1-bran från Typ IIB strängteori.
Kopplingskonstantens energiberoende beräknas på gaugeteorisidan.
I papper II används idén att den anomala dimesionen för en gaugeteorioperator kan tolkas som ett egenvärde till Hamiltonoperatorn i en spinnkedja. Den allmänna Leigh-Strassler deformationen skrivs om i termer av en spinn-ett spinnkedja och integrabilitetsegenskaperna för motsvarande Hamiltonoperator studeras.
I papper III definieras en icke-kommutativ multiplikationslag, en stjärnprodukt. Från denna stjärnprodukt erhålls den allmänna Leigh-Strasslerdeformationen, och det visas att deformationen bara leder till förfaktorer som multiplicerar amplituderna i den odeformerade teorin. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/548602
- author
- Bundzik, Daniel LU
- supervisor
- opponent
-
- Associate professor Henningsson, Måns, Fundamental fysik, Chalmers tekniska högskola
- organization
- publishing date
- 2007
- type
- Thesis
- publication status
- published
- subject
- keywords
- Matematisk och allmän teoretisk fysik, classical mechanics, quantum mechanics, relativity, gravitation, statistical physics, thermodynamics, Natural science, Naturvetenskap, Physics, Fysik, Mathematical and general theoretical physics, Star product, Leigh-Strassler deformation, R-matrix, Integrability, Spin-chains, Fractional D-branes, type IIB string theory, AdS/CFT-correspondence, gauge/gravity correspondence, kvantmekanik, klassisk mekanik, termodynamik, statistisk fysik, relativitet
- publisher
- Department of Theoretical Physics, Lund University
- defense location
- Lecture Hall F of the Department of Theoretical Physics
- defense date
- 2007-06-14 10:15:00
- ISBN
- 978-91-628-7140-6
- language
- English
- LU publication?
- yes
- id
- c21bd14e-83be-4c1d-a2a4-c0becbc1fdc8 (old id 548602)
- date added to LUP
- 2016-04-04 10:51:49
- date last changed
- 2018-11-21 21:01:13
@phdthesis{c21bd14e-83be-4c1d-a2a4-c0becbc1fdc8, abstract = {{This thesis deals with three topics related to the Ads/CFT correspondence.<br/><br> <br/><br> In Paper I, solutions describing the geometry of fractional D1-branes of Type IIB string theory are presented.<br/><br> <br/><br> The running coupling constant is computed on the gauge theory side.<br/><br> <br/><br> Paper II uses the idea that the anomalous dimension of a gauge theory operator can be interpreted as an eigenvalue of a spin chain Hamiltonian. The general Leigh-Strassler deformation is rewritten in terms of a spin-one spin chain and the integrability properties of the corresponding Hamiltonian are studied.<br/><br> <br/><br> In paper III a non-commutative multiplication law, a star product, is defined. From this star product the general Leigh-Strassler deformation is obtained, and it is shown that the deformation only results in prefactors to the amplitudes of the undeformed theory.}}, author = {{Bundzik, Daniel}}, isbn = {{978-91-628-7140-6}}, keywords = {{Matematisk och allmän teoretisk fysik; classical mechanics; quantum mechanics; relativity; gravitation; statistical physics; thermodynamics; Natural science; Naturvetenskap; Physics; Fysik; Mathematical and general theoretical physics; Star product; Leigh-Strassler deformation; R-matrix; Integrability; Spin-chains; Fractional D-branes; type IIB string theory; AdS/CFT-correspondence; gauge/gravity correspondence; kvantmekanik; klassisk mekanik; termodynamik; statistisk fysik; relativitet}}, language = {{eng}}, publisher = {{Department of Theoretical Physics, Lund University}}, school = {{Lund University}}, title = {{Aspects of the Duality between Supersymmetric Yang-Mills Theory and String Theory}}, year = {{2007}}, }