Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Aspects of the Duality between Supersymmetric Yang-Mills Theory and String Theory

Bundzik, Daniel LU (2007)
Abstract
This thesis deals with three topics related to the Ads/CFT correspondence.



In Paper I, solutions describing the geometry of fractional D1-branes of Type IIB string theory are presented.



The running coupling constant is computed on the gauge theory side.



Paper II uses the idea that the anomalous dimension of a gauge theory operator can be interpreted as an eigenvalue of a spin chain Hamiltonian. The general Leigh-Strassler deformation is rewritten in terms of a spin-one spin chain and the integrability properties of the corresponding Hamiltonian are studied.



In paper III a non-commutative multiplication law, a star product, is defined. From this star product the... (More)
This thesis deals with three topics related to the Ads/CFT correspondence.



In Paper I, solutions describing the geometry of fractional D1-branes of Type IIB string theory are presented.



The running coupling constant is computed on the gauge theory side.



Paper II uses the idea that the anomalous dimension of a gauge theory operator can be interpreted as an eigenvalue of a spin chain Hamiltonian. The general Leigh-Strassler deformation is rewritten in terms of a spin-one spin chain and the integrability properties of the corresponding Hamiltonian are studied.



In paper III a non-commutative multiplication law, a star product, is defined. From this star product the general Leigh-Strassler deformation is obtained, and it is shown that the deformation only results in prefactors to the amplitudes of the undeformed theory. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Denna avhandling behandlar tre frågor med anknytning till Ads/CFT-korrespondensen.



I papper I presenteras lösningar som beskriver geometrin hos fraktionella D1-bran från Typ IIB strängteori.



Kopplingskonstantens energiberoende beräknas på gaugeteorisidan.



I papper II används idén att den anomala dimesionen för en gaugeteorioperator kan tolkas som ett egenvärde till Hamiltonoperatorn i en spinnkedja. Den allmänna Leigh-Strassler deformationen skrivs om i termer av en spinn-ett spinnkedja och integrabilitetsegenskaperna för motsvarande Hamiltonoperator studeras.



I papper III definieras en icke-kommutativ multiplikationslag,... (More)
Popular Abstract in Swedish

Denna avhandling behandlar tre frågor med anknytning till Ads/CFT-korrespondensen.



I papper I presenteras lösningar som beskriver geometrin hos fraktionella D1-bran från Typ IIB strängteori.



Kopplingskonstantens energiberoende beräknas på gaugeteorisidan.



I papper II används idén att den anomala dimesionen för en gaugeteorioperator kan tolkas som ett egenvärde till Hamiltonoperatorn i en spinnkedja. Den allmänna Leigh-Strassler deformationen skrivs om i termer av en spinn-ett spinnkedja och integrabilitetsegenskaperna för motsvarande Hamiltonoperator studeras.



I papper III definieras en icke-kommutativ multiplikationslag, en stjärnprodukt. Från denna stjärnprodukt erhålls den allmänna Leigh-Strasslerdeformationen, och det visas att deformationen bara leder till förfaktorer som multiplicerar amplituderna i den odeformerade teorin. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Associate professor Henningsson, Måns, Fundamental fysik, Chalmers tekniska högskola
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Matematisk och allmän teoretisk fysik, classical mechanics, quantum mechanics, relativity, gravitation, statistical physics, thermodynamics, Natural science, Naturvetenskap, Physics, Fysik, Mathematical and general theoretical physics, Star product, Leigh-Strassler deformation, R-matrix, Integrability, Spin-chains, Fractional D-branes, type IIB string theory, AdS/CFT-correspondence, gauge/gravity correspondence, kvantmekanik, klassisk mekanik, termodynamik, statistisk fysik, relativitet
publisher
Department of Theoretical Physics, Lund University
defense location
Lecture Hall F of the Department of Theoretical Physics
defense date
2007-06-14 10:15:00
ISBN
978-91-628-7140-6
language
English
LU publication?
yes
id
c21bd14e-83be-4c1d-a2a4-c0becbc1fdc8 (old id 548602)
date added to LUP
2016-04-04 10:51:49
date last changed
2018-11-21 21:01:13
@phdthesis{c21bd14e-83be-4c1d-a2a4-c0becbc1fdc8,
  abstract     = {{This thesis deals with three topics related to the Ads/CFT correspondence.<br/><br>
<br/><br>
In Paper I, solutions describing the geometry of fractional D1-branes of Type IIB string theory are presented.<br/><br>
<br/><br>
The running coupling constant is computed on the gauge theory side.<br/><br>
<br/><br>
Paper II uses the idea that the anomalous dimension of a gauge theory operator can be interpreted as an eigenvalue of a spin chain Hamiltonian. The general Leigh-Strassler deformation is rewritten in terms of a spin-one spin chain and the integrability properties of the corresponding Hamiltonian are studied.<br/><br>
<br/><br>
In paper III a non-commutative multiplication law, a star product, is defined. From this star product the general Leigh-Strassler deformation is obtained, and it is shown that the deformation only results in prefactors to the amplitudes of the undeformed theory.}},
  author       = {{Bundzik, Daniel}},
  isbn         = {{978-91-628-7140-6}},
  keywords     = {{Matematisk och allmän teoretisk fysik; classical mechanics; quantum mechanics; relativity; gravitation; statistical physics; thermodynamics; Natural science; Naturvetenskap; Physics; Fysik; Mathematical and general theoretical physics; Star product; Leigh-Strassler deformation; R-matrix; Integrability; Spin-chains; Fractional D-branes; type IIB string theory; AdS/CFT-correspondence; gauge/gravity correspondence; kvantmekanik; klassisk mekanik; termodynamik; statistisk fysik; relativitet}},
  language     = {{eng}},
  publisher    = {{Department of Theoretical Physics, Lund University}},
  school       = {{Lund University}},
  title        = {{Aspects of the Duality between Supersymmetric Yang-Mills Theory and String Theory}},
  year         = {{2007}},
}