Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Large-scale galactic turbulence : Can self-gravity drive the observed H i velocity dispersions?

Agertz, Oscar LU ; Lake, George ; Teyssier, Romain ; Moore, Ben ; Mayer, Lucio and Romeo, Alessandro B. (2009) In Monthly Notices of the Royal Astronomical Society 392(1). p.294-308
Abstract

Observations of turbulent velocity dispersions in the H i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse... (More)

Observations of turbulent velocity dispersions in the H i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud-cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H i velocity dispersion profiles and the characteristic value of ∼10 km s -1 observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area ≳10 -3 M yr-1 kpc-2.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
keywords
Galaxies: evolution, Galaxies: formation, Galaxies: general, Hydrodynamics, Turbulence
in
Monthly Notices of the Royal Astronomical Society
volume
392
issue
1
pages
15 pages
publisher
Oxford University Press
external identifiers
  • scopus:57849130324
ISSN
0035-8711
DOI
10.1111/j.1365-2966.2008.14043.x
language
English
LU publication?
no
id
c64ff5ce-9e30-4351-856d-bdec1637db19
date added to LUP
2019-02-07 11:20:12
date last changed
2022-04-25 21:21:10
@article{c64ff5ce-9e30-4351-856d-bdec1637db19,
  abstract     = {{<p>Observations of turbulent velocity dispersions in the H i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud-cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H i velocity dispersion profiles and the characteristic value of ∼10 km s <sup>-1</sup> observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area ≳10 <sup>-3</sup> M<sub>⊙</sub> yr<sup>-1</sup> kpc<sup>-2</sup>.</p>}},
  author       = {{Agertz, Oscar and Lake, George and Teyssier, Romain and Moore, Ben and Mayer, Lucio and Romeo, Alessandro B.}},
  issn         = {{0035-8711}},
  keywords     = {{Galaxies: evolution; Galaxies: formation; Galaxies: general; Hydrodynamics; Turbulence}},
  language     = {{eng}},
  month        = {{01}},
  number       = {{1}},
  pages        = {{294--308}},
  publisher    = {{Oxford University Press}},
  series       = {{Monthly Notices of the Royal Astronomical Society}},
  title        = {{Large-scale galactic turbulence : Can self-gravity drive the observed H i velocity dispersions?}},
  url          = {{http://dx.doi.org/10.1111/j.1365-2966.2008.14043.x}},
  doi          = {{10.1111/j.1365-2966.2008.14043.x}},
  volume       = {{392}},
  year         = {{2009}},
}