Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The cervical lymph node contributes to peripheral inflammation related to Parkinson’s disease

Liu, Zongran ; Huang, Yang ; Wang, Xuejing ; Li, Jia Yi LU ; Zhang, Can ; Yang, Ying and Zhang, Jing (2023) In Journal of Neuroinflammation 20(1).
Abstract

Background: Peripheral inflammation is an important feature of Parkinson’s disease (PD). However, if and how CNS pathology is involved in the peripheral inflammation in PD remains to be fully investigated. Recently, the existence of meningeal lymphatics and its involvement in draining cerebral spinal fluid (CSF) to the cervical lymph node has been discovered. It is known that meningeal lymphatic dysfunction exists in idiopathic PD. The deep cervical lymph node (dCLN) substantially contributes to the drainage of the meningeal lymphatics. In addition, one of the lymphatics draining components, CSF, contains abundant α-synuclein (α-syn), a protein critically involved in PD pathogenesis and neuroinflammation. Thus, we began with exploring... (More)

Background: Peripheral inflammation is an important feature of Parkinson’s disease (PD). However, if and how CNS pathology is involved in the peripheral inflammation in PD remains to be fully investigated. Recently, the existence of meningeal lymphatics and its involvement in draining cerebral spinal fluid (CSF) to the cervical lymph node has been discovered. It is known that meningeal lymphatic dysfunction exists in idiopathic PD. The deep cervical lymph node (dCLN) substantially contributes to the drainage of the meningeal lymphatics. In addition, one of the lymphatics draining components, CSF, contains abundant α-synuclein (α-syn), a protein critically involved in PD pathogenesis and neuroinflammation. Thus, we began with exploring the possible structural and functional alterations of the dCLN in a PD mouse model (A53T mice) and investigated the role of pathological α-syn in peripheral inflammation and its potential underlying molecular mechanisms. Methods: In this study, the transgenic mice (prnp-SNCA*A53T) which specifically overexpressed A53T mutant α-syn in CNS were employed as the PD animal model. Immunofluorescent and Hematoxylin and eosin staining were used to evaluate structure of dCLN. Inflammation in dCLNs as well as in bone-marrow-derived macrophages (BMDMs) was assessed quantitatively by measuring the mRNA and protein levels of typical inflammatory cytokines (including IL-1β, IL-6 and TNF-α). Intra-cisterna magna injection, flow cytometric sorting and electrochemiluminescence immunoassays were applied to investigate the lymphatic drainage of α-syn from the CNS. RNA-seq and Western blot were used to explore how pathological α-syn mediated the inflammation in PD mice. Results: The results unequivocally revealed substantially enlarged dCLNs, along with slow lymphatic flow, and increased inflammation in the dCLNs of A53T mice. Oligomeric α-syn drained from CSF potently activated macrophages in the dCLN via endoplasmic reticulum (ER) stress. Notably, inhibition of ER stress effectively suppressed peripheral inflammation in PD mice. Conclusions: Our findings indicate that lymph node enlargement is closely related to macrophage activation, induced by meningeal lymphatics draining oligomeric α-syn, and contributes to the peripheral inflammation in PD. In addition, ER stress is a potential therapeutic target to ameliorate PD pathogenesis.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Cervical lymph node, Endoplasmic reticulum stress, Inflammation, Macrophage, Parkinson’s disease, α-Synuclein
in
Journal of Neuroinflammation
volume
20
issue
1
article number
93
publisher
BioMed Central (BMC)
external identifiers
  • pmid:37038192
  • scopus:85152115330
ISSN
1742-2094
DOI
10.1186/s12974-023-02770-5
language
English
LU publication?
yes
id
c772bd92-9346-4925-9267-01a69e4ce3c6
date added to LUP
2023-06-20 12:45:12
date last changed
2024-04-19 22:59:46
@article{c772bd92-9346-4925-9267-01a69e4ce3c6,
  abstract     = {{<p>Background: Peripheral inflammation is an important feature of Parkinson’s disease (PD). However, if and how CNS pathology is involved in the peripheral inflammation in PD remains to be fully investigated. Recently, the existence of meningeal lymphatics and its involvement in draining cerebral spinal fluid (CSF) to the cervical lymph node has been discovered. It is known that meningeal lymphatic dysfunction exists in idiopathic PD. The deep cervical lymph node (dCLN) substantially contributes to the drainage of the meningeal lymphatics. In addition, one of the lymphatics draining components, CSF, contains abundant α-synuclein (α-syn), a protein critically involved in PD pathogenesis and neuroinflammation. Thus, we began with exploring the possible structural and functional alterations of the dCLN in a PD mouse model (A53T mice) and investigated the role of pathological α-syn in peripheral inflammation and its potential underlying molecular mechanisms. Methods: In this study, the transgenic mice (prnp-SNCA*A53T) which specifically overexpressed A53T mutant α-syn in CNS were employed as the PD animal model. Immunofluorescent and Hematoxylin and eosin staining were used to evaluate structure of dCLN. Inflammation in dCLNs as well as in bone-marrow-derived macrophages (BMDMs) was assessed quantitatively by measuring the mRNA and protein levels of typical inflammatory cytokines (including IL-1β, IL-6 and TNF-α). Intra-cisterna magna injection, flow cytometric sorting and electrochemiluminescence immunoassays were applied to investigate the lymphatic drainage of α-syn from the CNS. RNA-seq and Western blot were used to explore how pathological α-syn mediated the inflammation in PD mice. Results: The results unequivocally revealed substantially enlarged dCLNs, along with slow lymphatic flow, and increased inflammation in the dCLNs of A53T mice. Oligomeric α-syn drained from CSF potently activated macrophages in the dCLN via endoplasmic reticulum (ER) stress. Notably, inhibition of ER stress effectively suppressed peripheral inflammation in PD mice. Conclusions: Our findings indicate that lymph node enlargement is closely related to macrophage activation, induced by meningeal lymphatics draining oligomeric α-syn, and contributes to the peripheral inflammation in PD. In addition, ER stress is a potential therapeutic target to ameliorate PD pathogenesis.</p>}},
  author       = {{Liu, Zongran and Huang, Yang and Wang, Xuejing and Li, Jia Yi and Zhang, Can and Yang, Ying and Zhang, Jing}},
  issn         = {{1742-2094}},
  keywords     = {{Cervical lymph node; Endoplasmic reticulum stress; Inflammation; Macrophage; Parkinson’s disease; α-Synuclein}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{BioMed Central (BMC)}},
  series       = {{Journal of Neuroinflammation}},
  title        = {{The cervical lymph node contributes to peripheral inflammation related to Parkinson’s disease}},
  url          = {{http://dx.doi.org/10.1186/s12974-023-02770-5}},
  doi          = {{10.1186/s12974-023-02770-5}},
  volume       = {{20}},
  year         = {{2023}},
}