Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Bayesian modeling of item heterogeneity in dichotomous recognition memory data and prospects for computerized adaptive testing

Güsten, Jeremie ; Berron, David LU ; Düzel, Emrah and Ziegler, Gabriel (2022) In Scientific Reports 12(1).
Abstract

Most current models of recognition memory fail to separately model item and person heterogeneity which makes it difficult to assess ability at the latent construct level and prevents the administration of adaptive tests. Here we propose to employ a General Condorcet Model for Recognition (GCMR) in order to estimate ability, response bias and item difficulty in dichotomous recognition memory tasks. Using a Bayesian modeling framework and MCMC inference, we perform 3 separate validation studies comparing GCMR to the Rasch model from IRT and the 2-High-Threshold (2HT) recognition model. First, two simulations demonstrate that recovery of GCMR ability estimates with varying sparsity and test difficulty is more robust and that estimates... (More)

Most current models of recognition memory fail to separately model item and person heterogeneity which makes it difficult to assess ability at the latent construct level and prevents the administration of adaptive tests. Here we propose to employ a General Condorcet Model for Recognition (GCMR) in order to estimate ability, response bias and item difficulty in dichotomous recognition memory tasks. Using a Bayesian modeling framework and MCMC inference, we perform 3 separate validation studies comparing GCMR to the Rasch model from IRT and the 2-High-Threshold (2HT) recognition model. First, two simulations demonstrate that recovery of GCMR ability estimates with varying sparsity and test difficulty is more robust and that estimates improve from the two other models under common test scenarios. Then, using a real dataset, face validity is confirmed by replicating previous findings of general and domain-specific age effects (Güsten et al. in Cortex 137:138–148, https://doi.org/10.1016/j.cortex.2020.12.017, 2021). Using cross-validation we show better out-of-sample prediction for the GCMR as compared to Rasch and 2HT model. In addition, we present a hierarchical extension of the model that is able to estimate age- and domain-specific effects directly, without recurring to a two-stage procedure. Finally, an adaptive test using the GCMR is simulated, showing that the test length necessary to obtain reliable ability estimates can be significantly reduced compared to a non-adaptive procedure. The GCMR allows to model trial-by-trial performance and to increase the efficiency and reliability of recognition memory assessments.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Scientific Reports
volume
12
issue
1
article number
1250
publisher
Nature Publishing Group
external identifiers
  • pmid:35075157
  • scopus:85123725987
ISSN
2045-2322
DOI
10.1038/s41598-022-04997-3
language
English
LU publication?
yes
id
c8831067-e5cc-42b4-abad-9b6632c697db
date added to LUP
2022-03-24 16:21:29
date last changed
2024-06-13 11:39:09
@article{c8831067-e5cc-42b4-abad-9b6632c697db,
  abstract     = {{<p>Most current models of recognition memory fail to separately model item and person heterogeneity which makes it difficult to assess ability at the latent construct level and prevents the administration of adaptive tests. Here we propose to employ a General Condorcet Model for Recognition (GCMR) in order to estimate ability, response bias and item difficulty in dichotomous recognition memory tasks. Using a Bayesian modeling framework and MCMC inference, we perform 3 separate validation studies comparing GCMR to the Rasch model from IRT and the 2-High-Threshold (2HT) recognition model. First, two simulations demonstrate that recovery of GCMR ability estimates with varying sparsity and test difficulty is more robust and that estimates improve from the two other models under common test scenarios. Then, using a real dataset, face validity is confirmed by replicating previous findings of general and domain-specific age effects (Güsten et al. in Cortex 137:138–148, https://doi.org/10.1016/j.cortex.2020.12.017, 2021). Using cross-validation we show better out-of-sample prediction for the GCMR as compared to Rasch and 2HT model. In addition, we present a hierarchical extension of the model that is able to estimate age- and domain-specific effects directly, without recurring to a two-stage procedure. Finally, an adaptive test using the GCMR is simulated, showing that the test length necessary to obtain reliable ability estimates can be significantly reduced compared to a non-adaptive procedure. The GCMR allows to model trial-by-trial performance and to increase the efficiency and reliability of recognition memory assessments.</p>}},
  author       = {{Güsten, Jeremie and Berron, David and Düzel, Emrah and Ziegler, Gabriel}},
  issn         = {{2045-2322}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{Nature Publishing Group}},
  series       = {{Scientific Reports}},
  title        = {{Bayesian modeling of item heterogeneity in dichotomous recognition memory data and prospects for computerized adaptive testing}},
  url          = {{http://dx.doi.org/10.1038/s41598-022-04997-3}},
  doi          = {{10.1038/s41598-022-04997-3}},
  volume       = {{12}},
  year         = {{2022}},
}