Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A spectral survey of WASP-19b with ESPRESSO

Sedaghati, Elyar ; MacDonald, Ryan J. ; Casasayas-Barris, Núria ; Hoeijmakers, H. Jens LU ; Boffin, Henri M.J. ; Rodler, Florian ; Brahm, Rafael ; Jones, Matías ; Sánchez-López, Alejandro and Carleo, Ilaria , et al. (2021) In Monthly Notices of the Royal Astronomical Society 505(1). p.435-458
Abstract

High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from lowresolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of HI, FeI, MgI, CaI, NaI, and KI neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fe I and place a 3σ upper limit of log (XFe/X⊙) ≈ -1.83 ± 0.11 on its... (More)

High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from lowresolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of HI, FeI, MgI, CaI, NaI, and KI neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fe I and place a 3σ upper limit of log (XFe/X⊙) ≈ -1.83 ± 0.11 on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H2O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02±0.15 σ) in the cross-correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does not constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low-resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a ~100× sub-solar TiO abundance, precisely constrained to log XTiO ≈ -7.52 ± 0.38, consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Methods: data analysis, Planets and satellites: atmospheres, Planets and satellites: individual: WASP-19b, Stars: activity, Stars: individual: WASP-19, Techniques: spectroscopic
in
Monthly Notices of the Royal Astronomical Society
volume
505
issue
1
pages
24 pages
publisher
Oxford University Press
external identifiers
  • scopus:85108146455
ISSN
0035-8711
DOI
10.1093/mnras/stab1164
language
English
LU publication?
yes
id
c949b4cb-738b-47a1-bf44-efb4ad16d291
date added to LUP
2021-08-11 11:57:59
date last changed
2024-04-20 10:05:40
@article{c949b4cb-738b-47a1-bf44-efb4ad16d291,
  abstract     = {{<p>High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from lowresolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of HI, FeI, MgI, CaI, NaI, and KI neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fe I and place a 3σ upper limit of log (XFe/X⊙) ≈ -1.83 ± 0.11 on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H2O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02±0.15 σ) in the cross-correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does not constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low-resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a ~100× sub-solar TiO abundance, precisely constrained to log XTiO ≈ -7.52 ± 0.38, consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results. </p>}},
  author       = {{Sedaghati, Elyar and MacDonald, Ryan J. and Casasayas-Barris, Núria and Hoeijmakers, H. Jens and Boffin, Henri M.J. and Rodler, Florian and Brahm, Rafael and Jones, Matías and Sánchez-López, Alejandro and Carleo, Ilaria and Figueira, Pedro and Mehner, Andrea and López-Puertas, Manuel}},
  issn         = {{0035-8711}},
  keywords     = {{Methods: data analysis; Planets and satellites: atmospheres; Planets and satellites: individual: WASP-19b; Stars: activity; Stars: individual: WASP-19; Techniques: spectroscopic}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{435--458}},
  publisher    = {{Oxford University Press}},
  series       = {{Monthly Notices of the Royal Astronomical Society}},
  title        = {{A spectral survey of WASP-19b with ESPRESSO}},
  url          = {{http://dx.doi.org/10.1093/mnras/stab1164}},
  doi          = {{10.1093/mnras/stab1164}},
  volume       = {{505}},
  year         = {{2021}},
}